Patents by Inventor Manuel A. Quijada

Manuel A. Quijada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170031067
    Abstract: The present invention relates to enhanced magnesium fluoride (MgF2) and lithium fluoride (LiF) over-coated aluminum (Al) mirrors, for far-ultraviolet (FUV) spectral region, and a method of making same. In addition, the present invention relates to rare-earth fluorides such as gadolinium fluoride (GdF2) and lutetium fluoride (LuF3) films, which are used as high-index layers, that when paired with the lower index MgF2, will provide multilayer coatings operable in the FUV spectral region.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 2, 2017
    Inventors: Manuel A. Quijada, Stephen H. Rice
  • Patent number: 8976362
    Abstract: A system, apparatus and method employing carbon nanotubes on substrates such as silicon, titanium, copper, stainless steel and other substrates, where the carbon nanotubes are blacker than existing paints and coatings, thereby providing an exponential increase in stray light suppression depending on the number of bounces of such treated surfaces. Additionally, the present invention is directed to techniques to better absorb and radiate unwanted energies. Further, the alternate substrates offer strength of material for numerous components and in numerous physical applications. The present invention is also directed to techniques for improving the adhesion of the nanotubes to the alternate substrate materials and also extending the wavelength of operation from the near ultraviolet to the far infrared portion of the spectrum (0.2 microns to 120 microns wavelength).
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 10, 2015
    Assignee: USA as represented by the Administrator of the National Aeronautics Space Administration
    Inventors: John G. Hagopian, Stephanie A. Getty, Manuel A. Quijada
  • Publication number: 20140043615
    Abstract: A system, apparatus and method employing carbon nanotubes on substrates such as silicon, titanium, copper, stainless steel and other substrates, where the carbon nanotubes are blacker than existing paints and coatings, thereby providing an exponential increase in stray light suppression depending on the number of bounces of such treated surfaces. Additionally, the present invention is directed to techniques to better absorb and radiate unwanted energies. Further, the alternate substrates offer strength of material for numerous components and in numerous physical applications. The present invention is also directed to techniques for improving the adhesion of the nanotubes to the alternate substrate materials and also extending the wavelength of operation from the near ultraviolet to the far infrared portion of the spectrum (0.2 microns to 120 microns wavelength).
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Inventors: John G. Hagopian, Stephanie A. Getty, Manuel A. Quijada
  • Publication number: 20130028829
    Abstract: Disclosed herein is a method of growth of enhanced adhesion MWCNTs on a substrate, referred to as the HGTiE process, the method comprising: chemical vapor deposition of an adhesive underlayer composed of alumina on a substrate composed of titanium or similar; chemical vapor deposition of a catalyst such as a thin film of iron on top of the adhesive underlayer; pretreatment of the substrate to hydrogen at high temperature; and exposure of the substrate to a feedstock gas such as ethylene at high temperature. The substrate surface may be roughened before placement of an adhesive layer through mechanical grinding or chemical etching. Finally, plasma etching of the MWCNT film may be performed with oxygen plasma. This method of growth allows for high strength adhesion of MWCNTs to the substrate the MWCNTs are grown upon.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: John G. Hagopian, Stephanie A. Getty, Manuel A. Quijada