Patents by Inventor Manuel Hertter

Manuel Hertter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230127445
    Abstract: A method for coating a component of an aircraft engine with a wear-resistant layer, wherein the component is first coated at least regionally with a nickel- or cobalt-based alloy and subsequently aluminized. Also disclosed is a method for producing a spray powder for producing a wear-resistant layer of a component of an aircraft engine.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 27, 2023
    Inventors: Simon DIETENBERGER, Beate Albert, Philipp Utz, Ludwig Hilser, Manuel Hertter, Mike Mosbacher
  • Publication number: 20220334036
    Abstract: The present invention relates to a method for characterizing a coating, in which method a mass and/or a volume of a basic body is/are measured prior to coating; a mass and a volume of the basic body with the applied coating are measured; for characterizing the coating, a density of the coating is determined from the volume and mass measurements; wherein the volume is optically measured.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Applicant: MTU Aero Engines AG
    Inventors: Florian Beck, Steven Piorun, Sascha Buettner, Manuel Hertter, Christoph Rau
  • Patent number: 10711628
    Abstract: A rotor member is described for a gas turbine that is adapted for rotating about a central axis, the rotor member being a blisk having a rotor blade row that extends around the central axis or a rotor disk having a mounting portion for installing rotor blades of a rotor blade row that extends around the central axis, and being axially offset from the rotor blade row and/or the mounting portion and, extending coaxially, having at least one annular and axially asymmetrical sealing fin that has a radially outer tip portion having a front flank facing the rotor blade row and/or the mounting portion, and an opposite flank facing away from the rotor blade row and/or the mounting portion; the front flank being less steep than the opposite flank; a turbine and a compressor having such a rotor member, and a method for manufacturing such a rotor member having at least one sealing fin coating.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 14, 2020
    Assignee: MTU Aero Engines AG
    Inventors: Lothar Albers, Thomas Binsteiner, Johann Geppert, Stefan Herbst, Manuel Hertter, Alexander Scharf, Robert Winsy, Stephen Royston Williams
  • Patent number: 10047619
    Abstract: A seal configuration (100) for a turbo machine having a rotor (5), wherein the seal configuration (100) has a sealing element (300) to create a seal with respect to the rotor (5) in an installed position and a supporting device (200). The supporting device (200) has, in at least one section of the supporting device, a material (9) that melts when it comes into contact with the rotating rotor (5) in the installed position. A turbo machine having a seal configuration (100) is also provided.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 14, 2018
    Assignee: MTU Aero Engines AG
    Inventors: Andre Werner, Stephan Klaen, Manuel Hertter, Frank Stiehler
  • Publication number: 20180112548
    Abstract: A rotor member is described for a gas turbine that is adapted for rotating about a central axis, the rotor member being a blisk having a rotor blade row that extends around the central axis or a rotor disk having a mounting portion for installing rotor blades of a rotor blade row that extends around the central axis, and being axially offset from the rotor blade row and/or the mounting portion and, extending coaxially, having at least one annular and axially asymmetrical sealing fin that has a radially outer tip portion having a front flank facing the rotor blade row and/or the mounting portion, and an opposite flank facing away from the rotor blade row and/or the mounting portion; the front flank being less steep than the opposite flank; a turbine and a compressor having such a rotor member, and a method for manufacturing such a rotor member having at least one sealing fin coating.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Lothar Albers, Thomas Binsteiner, Johann Geppert, Stefan Herbst, Manuel Hertter, Alexander Scharf, Robert Winsy
  • Patent number: 9952236
    Abstract: Disclosed is a method for monitoring a generative fabrication process in which a component is formed in an installation space from a multiplicity of layers by using a three-dimensional data model and a following layer is fixed to a preceding layer by means of a high-energy beam. The method comprises detecting the component at least optically and detecting the installation space thermally during layer application. Also disclosed is a device for carrying out the method.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: April 24, 2018
    Assignee: MTU AERO ENGINES AG
    Inventors: Wilhelm Satzger, Siegfried Sikorski, Karl-Heinz Dusel, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov, Manuel Hertter, Hans-Christian Melzer, Thomas Hess
  • Publication number: 20170370238
    Abstract: A blisk 10 for a gas turbine includes a rotor blade row 12 extending around a central axis X and, axially spaced therefrom and extending coaxially therewith, at least one annular sealing fin 11. The sealing fin has a radially outer annular portion 111 that is thickened as compared to a radially more inward annular portion 113. A compressor 1 includes a rotor and a casing 30. The casing includes at least one stator vane row having at least one abradable liner. The rotor includes at least one blisk 10, whose at least one sealing fin 11 at least partly engages in the abradable liner. A turbine is constructed analogously. A method for manufacturing a blisk 10 for a gas turbine includes producing a blisk 10 having least one annular sealing fin 11, as well as applying a coating 116 to a radially outer surface 115 of a thickened annular portion 111 of sealing fin 11.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Johann Geppert, Manuel Hertter
  • Patent number: 9845685
    Abstract: Disclosed is a process for producing a run-in coating (20, 24, 32, 44) on a component of a turbomachine, in particular of a gas turbine. The run-in coating is applied and produced on the component of the turbomachine by a kinetic cold gas compacting process (K3). The invention also encompasses a run-in coating for a static or rotating component of a turbomachine and a static or rotating component of a turbomachine, in particular of a gas turbine, having at least one run-in coating.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: December 19, 2017
    Assignee: MTU AERO ENGINES GMBH
    Inventors: Frank Stiehler, Manuel Hertter
  • Patent number: 9694568
    Abstract: A method for coating a component of a turbomachine is disclosed. The method includes covering a first surface of the component with a covering device, where the covering device is profiled in a zigzag shape. The method further includes applying a coating material via cold kinetic compaction or kinetic cold gas spraying on the component such that a second surface of the component is coated with the coating material and such that particles of the coating material are deflected off of the covering device so that the particles do not adhere to the covering device.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 4, 2017
    Assignee: MTU Aero Engines AG
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Patent number: 9512512
    Abstract: A method for coating a component, in particular a component of a gas turbine or of an aircraft engine, is disclosed. The coating is applied to the component by kinetic cold gas spraying, where prior to the deposition of the coating, the surface of the component to be coated is cleaned and compacted by shot peening with a blasting media. A component produced in this manner is also disclosed.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: December 6, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Joachim Bamberg, Roland Hessert, Manuel Hertter
  • Patent number: 9260784
    Abstract: The present invention relates to a method for producing a component, in particular a blade for a gas turbine, wherein a main body (2) is provided, to which a running-in layer (6) is applied, which can be worn away at least partially during operation to form an accurately fitting surface (11), wherein the running-in layer is applied by kinetic cold-gas compacting, and a component, in particular a blade for a gas turbine, comprising a main body, to which a running-in layer is applied, which can be worn away at least partially during operation to form an accurately fitting surface, wherein the running-in layer is a porous layer made of a Ti alloy.
    Type: Grant
    Filed: July 31, 2010
    Date of Patent: February 16, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Patent number: 9132508
    Abstract: The invention relates to a method for producing a rotor or stator blade (1a) of a gas turbine, in particular an aircraft gas turbine (2), comprising forming a airfoil (8a) made of at least one first material and attaching a blade root (4a) made of at least one second material to the airfoil (8a) by means of a thermal spraying method. The invention further relates to a rotor or stator blade (1a) produced according to such a method.
    Type: Grant
    Filed: October 2, 2010
    Date of Patent: September 15, 2015
    Assignee: MTU Aero Engines GmbH
    Inventors: Thomas Dautl, Andreas Jakimov, Manuel Hertter
  • Patent number: 9095900
    Abstract: The invention relates to a generative production method for producing a component by selectively melting and/or sintering a powder several times consecutively by introducing an amount of heat by means of beam energy, such that the powder particles melt and/or sinter in layers, wherein the powder particles (1) are made of a first material (2) and the powder particles are surrounded by a second material (3) partially or over the entire surface thereof, wherein the second material has a lower melting point than the first material and/or lowers the melting point of the first material when mixed with the first material. The invention further relates to a corresponding powder and to a prototype produced from said powder.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: August 4, 2015
    Assignee: MTU AERO ENGINES AG
    Inventors: Manuel Hertter, Erwin Bayer, Markus Waltemathe, Klaus Broichhausen, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov
  • Patent number: 9040116
    Abstract: A method for spraying a coating and a cold gas spray nozzle is disclosed. The method includes spraying a coating by the cold gas spray nozzle. A rinsing gas is fed to the cold gas spray nozzle during an interruption of the spraying or at an end of the spraying. Deposits in the cold gas spray nozzle are cooled and detached by the rinsing gas.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: May 26, 2015
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20150125278
    Abstract: The present invention relates to a seal configuration (100) for a turbo machine having a rotor (5), wherein the seal configuration (100) has a sealing element (300) to create a seal with respect to the rotor (5) in an installed position and a supporting device (200). The supporting device (200) has, in at least one section of the supporting device, a material (9) that melts when it comes into contact with the rotating rotor (5) in the installed position. The present invention further relates to a turbo machine having a seal configuration (100).
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Andre WERNER, Stephan Klaen, Manuel Hertter, Frank Stiehler
  • Patent number: 9021696
    Abstract: The invention relates to a method for producing a plating (5) of a vane tip. Said method consists of the following steps: a) a vane having a vane tip which is arranged opposite the base of the vane (2) and which comprises a surface which points radially outwards is provided, and b) a porous layer (7) is applied to at least the surface (4) of the vane tip and/or c) a bulge (8) which increases the surface of the vane tip is applied to at least one part of the flanks of the vane tip, said flanks surrounding the surface of the vane tip, and d) the plating (5) is applied to the porous layer and/or the bulge. The invention also relates to corresponding vanes or gas turbines with corresponding vanes.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 5, 2015
    Assignee: MTU Aero Engines AG
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20140360664
    Abstract: A method for coating a component of a turbomachine is disclosed. The method includes covering a first surface of the component with a covering device, where the covering device is profiled in a zigzag shape. The method further includes applying a coating material via cold kinetic compaction or kinetic cold gas spraying on the component such that a second surface of the component is coated with the coating material and such that particles of the coating material are deflected off of the covering device so that the particles do not adhere to the covering device.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 11, 2014
    Applicant: MTU Aero Engines AG
    Inventors: Andreas JAKIMOV, Stefan SCHNEIDERBANGER, Manuel HERTTER
  • Patent number: 8852681
    Abstract: A mask and method for kinetic cold gas compacting is disclosed. The mask includes a body for covering a not-to-be-coated region of a substrate to be coated having a work side exposed to a coating substance. The work side has a hardness such that the work side is not plastic deformable by a striking coating particle.
    Type: Grant
    Filed: November 7, 2009
    Date of Patent: October 7, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Manuel Hertter, Stefan Schneiderbanger
  • Patent number: 8697184
    Abstract: The present invention relates to a method for producing a coating on a gas turbine component, in which particles at least of parts of a material to be applied as coating are accelerated by means of kinetic gas dynamic cold spraying in a spray jet onto the surface (2) of the component (1) to be coated, wherein a reactive gas is fed into the spray jet (6), so that the reactive gas reacts at least partially with the particles of the coating material when the particles impinge on the surface (2) to be coated and/or wherein the deposited layer (9) is heated locally and/or over a large area and impacted with a reactive gas, as well as a gas turbine component produced in this way.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Manuel Hertter, Andreas Jakimov, Stefan Schneiderbanger
  • Publication number: 20140094950
    Abstract: A method for producing an abradable spray coating for a component of a turbine engine by a thermal spraying process is disclosed. A process parameter pB1 is calculated according to the formula pB1=pB2+HB1?HB2?(?x·y)/z+n where pB1 is a process parameter of a spraying process that is to be conducted, pB2 is a corresponding process parameter of a previous spraying process, HB1 is a hardness of a coating that is to be applied by the spraying process to be conducted, HB2 is a hardness of a coating that was applied by the previous spraying process, ?x is a process variable related to the thermal spraying process and the previous spraying process and y, z and n are constant parameters.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 3, 2014
    Applicant: MTU Aero Engines AG
    Inventors: Andreas Jakimov, Manuel Hertter, Andreas Kaehny