Patents by Inventor Manuel Koehl

Manuel Koehl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920206
    Abstract: A cold rolled steel flat product for packaging made of a low carbon steel having a thickness of less than 0.49 mm and a method of making. The steel flat product has a martensite-free microstructure and represents a standard grade for packaging with tensile strengths from 300 to 550 MPa, which can be produced from a cold-rolled steel sheet with a carbon content from 0.01% to 0.1% by weight by inductive annealing of the steel sheet and subsequent water cooling for quenching the recrystallization-annealed steel sheet. To achieve flatness of 5 I-units or less, the induction annealed steel sheet is first primarily cooled in the manufacturing process to a take-off temperature at a rate of less than 1000 K/s, with the take-off temperature being below the transformation temperature of 723° C., and thereafter a secondary cooling by water cooling with a water temperature of less than 80° C. at a rate of more than 1000 K/s.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: March 5, 2024
    Assignee: thyssenkrupp Rasselstein GmbH
    Inventors: Burkhard Kaup, Peter Kirchesch, Manuel Köhl, Dimitrios Nouskalis, Alexander Gossen, Björn Ehmke
  • Publication number: 20230175092
    Abstract: A method for producing a steel sheet for packaging includes: cold-rolling a hot-rolled steel sheet made from a steel having a carbon content of 10 to 1000 ppm by weight, the steel of the hot-rolled steel sheet having a predetermined recrystallization temperature (TR); heating the cold-rolled steel sheet to a predetermined heating temperature (TE), where TR?TE, the heating performed at least partially in the presence of a nitrogen donor at least until TR is reached such that when the cold-rolled steel sheet is heated, nitrogen from the nitrogen donor is diffused at least into a near-surface region of the cold-rolled sheet steel and incorporated in the near-surface region, as a result of which the TR in the near-surface region is increased by a value ?T, where TE<TR+?T. Using this method, high-strength steel sheets having a multilayer microstructure can be produced.
    Type: Application
    Filed: April 23, 2021
    Publication date: June 8, 2023
    Applicant: thyssenkrupp Rasselstein GmbH
    Inventors: Laura PÖRZGEN, Manuel KÖHL, Philipp SCHMALENBACH, Burkhard KAUP
  • Publication number: 20230107544
    Abstract: A cold rolled steel flat product for packaging made of a low carbon steel having a thickness of less than 0.49 mm and a method of making. The steel flat product has a martensite-free microstructure and represents a standard grade for packaging with tensile strengths from 300 to 550 MPa, which can be produced from a cold-rolled steel sheet with a carbon content from 0.01% to 0.1% by weight by inductive annealing of the steel sheet and subsequent water cooling for quenching the recrystallization-annealed steel sheet. To achieve flatness of 5 I-units or less, the induction annealed steel sheet is first primarily cooled in the manufacturing process to a take-off temperature at a rate of less than 1000 K/s, with the take-off temperature being below the transformation temperature of 723° C., and thereafter a secondary cooling by water cooling with a water temperature of less than 80° C. at a rate of more than 1000 K/s.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 6, 2023
    Applicant: thyssenkrupp Rasselstein GmbH
    Inventors: Burkhard KAUP, Peter KIRCHESCH, Manuel KÖHL, Dimitrios NOUSKALIS, Alexander GOSSEN, Björn EHMKE
  • Publication number: 20230081814
    Abstract: The invention relates to sheet metal packaging products, in particular tinplate or electrolytically chrome-plated sheet steel (ECCS), consisting of a sheet steel substrate (S) with a thickness in the region of 0.1 mm to 0.6 mm and a coating (B), in particular made of tin and/or chromium or chromium and chromium oxide, that is electrolytically deposited on at least one side of the sheet metal substrate. In addition, at least one surface of the sheet metal packaging product provided with the coating (B) has a surface profile with periodically repeating structure elements in at least one direction, wherein an autocorrelation function resulting from the surface profile has a plurality of side lobes with a height of at least 20%, preferably at least 30% of the height of the main lobe. These sheet metal packaging products have improved and novel surface properties.
    Type: Application
    Filed: January 12, 2021
    Publication date: March 16, 2023
    Applicant: ThyssenKrupp Rasselstein GmbH
    Inventors: Folkert SCHULZE-KRAASCH, Karl-Heinz KOPPLIN, Stefan WISCHMANN, Martin KOCH, Jörg GORSCHLÜTER, Manuel KÖHL, Patrick THIEL, Walter HÖRNIG, Frank SCHUMANN, Markus OPPER
  • Patent number: 10227671
    Abstract: A method for producing a corrosion-resistant steel sheet made of an unalloyed or low-alloy and cold-rolled steel having a carbon content of less than 0.1 wt %. The method includes the following steps: applying a metal coating to the steel sheet; annealing the coated steel sheet in a recrystallizing manner by heating the coated steel sheet to temperatures in the recrystallization range by electromagnetic induction in an inert-gas atmosphere; and quenching the coated and annealed steel sheet. The metal coating is fused on during the recrystallization annealing.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: March 12, 2019
    Assignee: THYSSENKRUPP RASSELSTEIN GMBH
    Inventors: Helmut Oberhoffer, Anika Szesni, Manuel Köhl, Dimitrios Nouskalis, Reiner Sauer
  • Publication number: 20170226609
    Abstract: A method for producing a nitrided packaging steel from a hot-rolled steel product with a carbon content of 400 to 1200 ppm, utilizing a cold-rolling of the steel product to a flat steel product, subsequent recrystallization annealing of the cold-rolled flat steel product in an annealing furnace, in particular a continuous annealing furnace. A nitrogen-containing gas is supplied into the annealing furnace and is directed at the flat steel product to introduce unbonded nitrogen into the flat steel product in an amount corresponding to a concentration of more than 100 ppm, or to increase the amount of unbonded nitrogen in the flat steel product to a concentration of more than 100 ppm, and subsequent cooling of the recrystallized annealed flat steel product at a cooling rate of at least 100 K/s directly after the recrystallization annealing.
    Type: Application
    Filed: August 3, 2015
    Publication date: August 10, 2017
    Applicant: ThyssenKrupp Rasselstein GmbH
    Inventors: Blaise MASSICOT, Manuel KÖHL, Burkhard KAUP, Reiner SAUER, Ricarda KLEMMER, Chrysanthus KIEWITZ
  • Publication number: 20160002748
    Abstract: A method for producing a corrosion-resistant steel sheet made of an unalloyed or low-alloy and cold-rolled steel having a carbon content of less than 0.1 wt %. The method includes the following steps: applying a metal coating to the steel sheet; annealing the coated steel sheet in a recrystallizing manner by heating the coated steel sheet to temperatures in the recrystallization range by electromagnetic induction in an inert-gas atmosphere; and quenching the coated and annealed steel sheet. The metal coating is fused on during the recrystallization annealing.
    Type: Application
    Filed: October 14, 2013
    Publication date: January 7, 2016
    Inventors: Helmut OBERHOFFER, Anika SZESNI, Manuel KÖHL, Dimitrios NOUSKALIS, Reiner SAUER
  • Publication number: 20150360444
    Abstract: The invention concerns a method for the production of an aluminized packaging steel from a cold-rolled steel sheet made of an unalloyed or low-alloy steel with the following steps: a. heating of the steel sheet by electromagnetic induction at temperatures in the recrystallization range of the steel at a heating rate of more than 75 K/s, so as to anneal the steel sheet in a recrystallizing manner; b. dipping of the steel sheet annealed in a recrystallizing manner into a molten aluminum bath, so as to apply an aluminum layer on the steel sheet, wherein the steel sheet, upon being dipped into the aluminum bath, has a temperature of at least 700° C.; and c. pulling the steel sheet out of the aluminum bath and cooling the aluminized steel sheet at a cooling rate of at least 100 K/s.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 17, 2015
    Inventors: Dirk GADE, Reiner SAUER, Burkhard KAUP, Manuel KÖHL
  • Patent number: 8916091
    Abstract: Disclosed is a method for producing semi-finished products from a shape memory alloy, particularly an NiTi shape memory alloy, wherein a powder is first produced from a shape memory alloy, and subsequently the powder is divided into a coarse fraction and a fine fraction in a separating cut T. While the fine fraction is required, in particular, for the production of a first semi-finished product, employing the metal injection molding (MIM) method, the coarse fraction can be used for the production of a second semi-finished product, employing the hot isostatic pressing (HIP) method. The advantages of the invention can be summarized as follows. The MIM method for producing semi-finished products from a shape memory alloy is qualitatively improved and more cost-effective to implement if the coarse fraction that is typically obtained during powder production, but not used for the MIM process, can advantageously be supplied to a further process, in this case the HIP process.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 23, 2014
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Manuel Koehl, Martin Bram, Berthold Coenen, Hans Peter Buchkremer, Detlev Stoever
  • Publication number: 20100310407
    Abstract: Disclosed is a method for producing semi-finished products from a shape memory alloy, particularly an NiTi shape memory alloy, wherein a powder is first produced from a shape memory alloy, and subsequently the powder is divided into a coarse fraction and a fine fraction in a separating cut T. While the fine fraction is required, in particular, for the production of a first semi-finished product, employing the metal injection molding (MIM) method, the coarse fraction can be used for the production of a second semi-finished product, employing the hot isostatic pressing (HIP) method. The advantages of the invention can be summarized as follows. The MIM method for producing semi-finished products from a shape memory alloy is qualitatively improved and more cost-effective to implement if the coarse fraction that is typically obtained during powder production, but not used for the MIM process, can advantageously be supplied to a further process, in this case the HIP process.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 9, 2010
    Inventors: Manuel Koehl, Martin Bram, Berthold Coenen, Hans Peter Buchkremer, Detlev Stoever