Patents by Inventor Manuela Ocampo

Manuela Ocampo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230415456
    Abstract: Laminated glass-based articles are provided. The glass-based articles include at least a first glass-based layer, a second glass-based layer, and a polymer layer disposed between the first and second glass-based layers. The first glass-based layer includes a compressive stress. A difference between the coefficient of thermal of expansion of the first glass-based layer and the coefficient of thermal of expansion of the second glass-based layer is greater than or equal to 0.4 ppm/° C. Methods of producing the laminated glass-based articles are also provided.
    Type: Application
    Filed: November 24, 2021
    Publication date: December 28, 2023
    Inventors: Ravindra Kumar Akarapu, Matthew John Dejneka, Michael Edward DeRosa, Diane Kimberlie Guilfoyle, Camden Wayne Isenberg, Manuela Ocampo Davila, Shawn Michael O'Malley, Paul George Rickerl, Amber Leigh Tremper, Erick Franklin VanDuyne, Jonathan Earl Walter
  • Patent number: 11536888
    Abstract: Embodiments of a light diffusing device with a color conversion layer are disclosed. Specifically the color conversion layer includes a luminophore that converts light from a higher wavelength to a lower wavelength.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: December 27, 2022
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Manuela Ocampo, Peter Gerard Wigley
  • Patent number: 11490510
    Abstract: A ceramic and polymer composite including: a first continuous phase comprising a sintered porous ceramic having a solid volume of from 50 to 85 vol % and a porosity or a porous void space of from 50 to 15 vol %, based on the total volume of the composite; and a second continuous polymer phase situated in the porous void space of the sintered porous ceramic. Also disclosed is a composite article, a method of making the composite, and a method of using the composite.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: November 1, 2022
    Assignee: Corning Incorporated
    Inventors: Weiguo Miao, Manuela Ocampo, Michael Lesley Sorensen, James William Zimmermann
  • Patent number: 11150403
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Patent number: 11059747
    Abstract: A light diffusing optical fiber includes a glass core, a cladding, a phosphor layer surrounding the cladding, and a plurality of scattering structures positioned within the glass core, the cladding, or both. The phosphor layer includes two or more phosphors and is configured to convert guided light diffusing through the phosphor layer into emission light such that the color of the emission light has a chromaticity within a u?-v? chromaticity region on a CIE 1976 chromaticity space defined by: a first u?-v? boundary line and a second u?-v? boundary line that extend parallel to a planckian locus at a distance of ±0.02 Duv from the planckian locus, a third u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 2000 K, and a fourth u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 10000 K.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: July 13, 2021
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Manuela Ocampo
  • Patent number: 11009656
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: May 18, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Patent number: 11009655
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 18, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Publication number: 20210141138
    Abstract: Embodiments of a light diffusing device with a color conversion layer are disclosed. Specifically the color conversion layer includes a luminophore that converts light from a higher wavelength to a lower wavelength.
    Type: Application
    Filed: April 1, 2019
    Publication date: May 13, 2021
    Inventors: Stephan Lvovich Logunov, Manuela Ocampo, Peter Gerard Wigley
  • Publication number: 20200284976
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Application
    Filed: April 3, 2020
    Publication date: September 10, 2020
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Publication number: 20200257029
    Abstract: A light diffusing device is provided. The light diffusing device includes a light diffusing element and an outer polymer coating layer surrounding the light diffusing element, the outer polymer coating layer being the cured product of a liquid polymer blend including a scattering composition and a luminophore.
    Type: Application
    Filed: November 18, 2016
    Publication date: August 13, 2020
    Inventors: Edward John Fewkes, Trista Nicole Hesch, Stephan Lvovich Logunov, Manuela Ocampo
  • Publication number: 20200216356
    Abstract: A light diffusing optical fiber includes a glass core, a cladding, a phosphor layer surrounding the cladding, and a plurality of scattering structures positioned within the glass core, the cladding, or both. The phosphor layer includes two or more phosphors and is configured to convert guided light diffusing through the phosphor layer into emission light such that the color of the emission light has a chromaticity within a u?-v? chromaticity region on a CIE 1976 chromaticity space defined by: a first u?-v? boundary line and a second u?-v? boundary line that extend parallel to a planckian locus at a distance of ±0.02 Duv from the planckian locus, a third u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 2000 K, and a fourth u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 10000 K.
    Type: Application
    Filed: March 28, 2018
    Publication date: July 9, 2020
    Inventors: Stephan Lvovich Logunov, Manuela Ocampo
  • Publication number: 20200146145
    Abstract: A ceramic and polymer composite including: a first continuous phase comprising a sintered porous ceramic having a solid volume of from 50 to 85 vol % and a porosity or a porous void space of from 50 to 15 vol %, based on the total volume of the composite; and a second continuous polymer phase situated in the porous void space of the sintered porous ceramic. Also disclosed is a composite article, a method of making the composite, and a method of using the composite.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Weiguo Miao, Manuela Ocampo, Michael Lesley Sorensen, James William Zimmermann
  • Patent number: 10640654
    Abstract: A coating composition containing a radiation-curable component, a photoinitiator, and a UV absorber is described. The coating composition may be applied to an optical fiber and cured to form a coating. The UV absorber provides a protective function by inhibiting unintended curing of the coating that may occur upon exposure of the fiber to UV light during fiber processing. The spectral overlap of the photoinitiator and UV absorber is minimized to permit efficient photoinitiation of the curing reaction over one or more wavelengths. Photoinitiation may be excited by an LED source with a peak emission wavelength in the range from 360 nm-410 nm.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: May 5, 2020
    Assignee: Corning Incorporated
    Inventors: Michael Edward DeRosa, Michelle Dawn Fabian, Stephan Lvovich Logunov, James Robert Matthews, Manuela Ocampo
  • Patent number: 10627558
    Abstract: A light-diffusing optical fiber that provides a symmetric intensity distribution of forward and backward scattered light is described. The fiber includes a secondary coating that contains scattering centers. Control of the thickness of the secondary coating and concentration of scattering centers provides control over the distribution of scattered intensity. More symmetric distributions of scattered light intensity are realized by increasing the thickness of the secondary coating and/or the concentration of scattering centers in the secondary coating. Representative scattering centers include oxide nanoparticles.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 21, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kevin Wallace Bennett, Trista Nicole Hesch, Stephan Lvovich Logunov, Manuela Ocampo
  • Patent number: 10568205
    Abstract: A ceramic and polymer composite including: a first continuous phase comprising a sintered porous ceramic having a solid volume of from 50 to 85 vol % and a porosity or a porous void space of from 50 to 15 vol %, based on the total volume of the composite; and a second continuous polymer phase situated in the porous void space of the sintered porous ceramic. Also disclosed is a composite article, a method of making the composite, and a method of using the composite.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Weiguo Miao, Manuela Ocampo, Michael Lesley Sorensen, James William Zimmermann
  • Patent number: 10288827
    Abstract: A crush resistant optical cable and/or crush resistant optical fiber buffer tube are provided. The cable generally includes a tube having at least one layer formed from a first material and an optical fiber located within a channel of the first tube. The buffer tube is configured to protect optical fibers from crush or impact events through a cushioning action. For example, the first material may be a polymer material having modulus of elasticity of less than 200 MPa, and the layer of the tube acts as a compliant cushioning layer at least partially contacting and surrounding an outer surface of the optical fiber when radially directed forces are applied to the outer surface of the tube.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 14, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Adra Smith Baca, Dana Craig Bookbinder, Manuela Ocampo, Richard Curwood Peterson, David Alan Seddon, Pushkar Tandon, Brandon Robert Williamson
  • Patent number: 10222547
    Abstract: A flame retardant optical fiber is provided. The flame retardant optical fiber includes a glass core, a cladding surrounding the glass core and a primary coating adhered to the cladding. The flame retardant optical fiber also includes a secondary coating surrounding the primary coating, wherein the secondary coating is formed from a coating composition that is substantially free of an oligomeric component and that comprises a flame retardant composition including a flame retardant material.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: March 5, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Yangbin Chen, Emanuela Gallo, Manuela Ocampo
  • Patent number: 10094973
    Abstract: Optical fibers having a mode field diameter at 1310 nm of at least 8.8 ?m, wire mesh covered drum microbending losses at 1550 nm less than 0.03 dB/km, and a 2 m cutoff wavelength less than 1320 nm. The fibers may include a central core region, an inner cladding region, an outer cladding region, a primary coating with an in situ modulus less than 0.20 MPa and glass transition temperature less than ?35° C., and a secondary coating with an in situ modulus greater than 1500 MPa. The fibers may further include a depressed index cladding region. The relative refractive index of the central core region may be greater than the relative refractive index of the outer cladding region may be greater than the relative refractive index of the inner cladding region. The fibers may be produced at draw speeds of 30 m/s or greater.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 9, 2018
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Kevin Alton Lewis, Snigdharaj Kumar Mishra, Manuela Ocampo, Joan Diana Patterson
  • Publication number: 20180203184
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna lgorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Patent number: 9995874
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: June 12, 2018
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon