Patents by Inventor Manuela Serban

Manuela Serban has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130256193
    Abstract: One exemplary embodiment can be a process for facilitating adding a promoter metal to at least one catalyst particle in situ in a catalytic naphtha reforming unit. The process can include introducing a compound comprising the promoter metal to the catalyst naphtha reforming unit and adding an effective amount of the promoter metal from the compound comprising the promoter metal to the catalyst particle under conditions to effect such addition and improve a conversion of a hydrocarbon feed.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Mark P. Lapinski, Kurt M. VandenBussche, Manuela Serban
  • Publication number: 20130261363
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Application
    Filed: July 12, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Publication number: 20130256194
    Abstract: One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, at least two alkali metals or at least two alkaline earth metals, or mixtures of alkali metals and alkaline earth metals and a support.
    Type: Application
    Filed: July 12, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Colleen K. Costello, Mark P. Lapinski
  • Publication number: 20130248423
    Abstract: A process for removing a nitrogen compound from a fuel feed, such as vacuum gas oil or diesel fuel, wherein the process includes contacting the fuel feed comprising the nitrogen compound with a fuel-immiscible caprolactamium ionic liquid to produce a fuel and fuel-immiscible caprolactamium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil or a diesel effluent having a reduced nitrogen content relative to the vacuum gas oil or diesel feed. The invention provides an alternate use for caprolactamium ionic liquid that is produced in large quantities for the manufacture of caprolactam.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Alan B. Levy, Lihao Tang, Alakananda Bhattacharyya
  • Patent number: 8518240
    Abstract: One exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon. The adsorption zone is operated at a temperature of at least 370° C.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski, Mark D. Moser
  • Publication number: 20130158319
    Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The process includes passing a catalyst stream in a counter-current flow relative to the hydrocarbon process stream.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Kurt M. Vanden Bussche, Manuela Serban, Mark P. Lapinski, Mary Jo Wier, Gregory J. Gajda
  • Publication number: 20130158317
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
  • Publication number: 20130158320
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Mark D. Moser, Kurt M. Vanden Bussche, David A. Wegerer, Manuela Serban
  • Publication number: 20130158310
    Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20130158316
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
  • Publication number: 20130158313
    Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20130158311
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20130158312
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8383538
    Abstract: One exemplary embodiment can be an apparatus for treating a hydrocarbon stream having one or more compounds with a boiling point of about 140° to about 450° C. The apparatus can include an extraction zone and a regeneration zone. The extraction zone can include at least one settler. Each settler can have a height and a length. Typically the length is greater than the height. Also, the settler can form a boot, which can be adapted to receive a feed at one end. The regeneration zone may include a regenerator for an ionic liquid. The regenerator can include a column adapted to provide a regenerated ionic liquid to the extraction zone.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 26, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Alakananda Bhattacharyya, Luigi Laricchia, John P. Brady, David N. Myers
  • Publication number: 20120277507
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20120273392
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 23, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche
  • Publication number: 20120277505
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer, Gregory J. Gajda
  • Publication number: 20120277506
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Antoine Negiz, Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser
  • Patent number: 8262901
    Abstract: An exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels each vessel containing an activated carbon adsorbent. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon adsorbent wherein the first activated carbon adsorbent comprises iron.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski, Mark D. Moser
  • Publication number: 20120145528
    Abstract: One exemplary embodiment can be an apparatus for treating a hydrocarbon stream having one or more compounds with a boiling point of about 140° to about 450° C. The apparatus can include an extraction zone and a regeneration zone. The extraction zone can include at least one settler. Each settler can have a height and a length. Typically the length is greater than the height. Also, the settler can form a boot, which can be adapted to receive a feed at one end. The regeneration zone may include a regenerator for an ionic liquid. The regenerator can include a column adapted to provide a regenerated ionic liquid to the extraction zone.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: UOP LLC
    Inventors: David Nathan Myers, Manuela Serban, Kurt Vanden Bussche, Alakananda Bhattacharyya, Luigi Laricchia, John Patrick Brady