Patents by Inventor Manus P. Henry

Manus P. Henry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10359306
    Abstract: Systems and methods for testing petroleum wells utilize a fluidic system to receive multiphase fluid output from the wells. A metering system measures the flow rate of oil, water, and gas through the fluidic system. The metering system can be operated in a first mode in which the metering system provides time-varying measurements of the flow rates and a second mode in which the metering system measures the flow rates over longer intervals of time, for example, providing measurements of the total flow or average flow rate over certain time intervals. A control system selectively and sequentially routes the output of the wells to perform a series of well tests on the wells and causes the metering system to switch between the first and second modes in response to a change in operating conditions.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 23, 2019
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Patent number: 10302477
    Abstract: A method of assessing flow from an individual well in a set of oil and gas wells includes flowing output from a first subset of the wells collectively to a first flow measurement system through a first conduit while flowing output from a second subset of the wells collectively to a second flow measurement system through a second conduit different from the first conduit. Total flow through the first flow measurement system and total flow through the second measurement system are measured. Output from said individual well is rerouted from one of said first and second measurement systems to the other of said first and second measurement systems. Total flow through at least one of the first and second measurement systems is measured after the re-routing. A difference between the total flow rate before the re-routing and after the re-routing is used to assess flow rate from said individual well.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: May 28, 2019
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Publication number: 20180306622
    Abstract: Motion is induced in a conduit such that the conduit vibrates in a major mode of vibration having a major amplitude and a minor mode of vibration having a minor amplitude. The major amplitude is larger than the minor amplitude, the major mode of vibration has a first frequency of vibration and the minor mode of vibration has a second frequency of vibration, and the minor mode of vibration interferes with the major mode of vibration to cause a beat signal having a frequency related to the first frequency of vibration and the second frequency of vibration. The frequency of the beat signal is determined, and the second frequency of vibration is determined based on the determined frequency of the beat signal.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Applicant: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Mihaela D. Duta, Michael S. Tombs
  • Patent number: 9995613
    Abstract: Motion is induced in a conduit such that the conduit vibrates in a major mode of vibration having a major amplitude and a minor mode of vibration having a minor amplitude. The major amplitude is larger than the minor amplitude, the major mode of vibration has a first frequency of vibration and the minor mode of vibration has a second frequency of vibration, and the minor mode of vibration interferes with the major mode of vibration to cause a beat signal having a frequency related to the first frequency of vibration and the second frequency of vibration. The frequency of the beat signal is determined, and the second frequency of vibration is determined based on the determined frequency of the beat signal.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: June 12, 2018
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Mihaela D. Duta, Michael S. Tombs
  • Publication number: 20180143054
    Abstract: A system for metering flow of a fluid has a vibratable flowtube for receiving a multiphase fluid flow. A driver is configured to vibrate the flowtube. A pair of sensors is configured to detect movement of the flowtube at different locations on the flowtube. Pressure and temperature sensors are configured to measure a pressure of the fluid. One or more processors are configured to use a phase difference between the sensor signals to determine a fluid flow rate through the flowtube. The one or more processors are further configured to determine an amount of dissolved gas in the multiphase fluid using the pressure, the temperature, and the relative amounts the multiple liquids in the multiphase fluid.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 24, 2018
    Applicant: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro, Michael S. Tombs, Alice Anne Probst
  • Patent number: 9863798
    Abstract: A system for metering flow of a fluid has a vibratable flowtube for receiving a multiphase fluid flow. A driver is configured to vibrate the flowtube. A pair of sensors is positioned to detect movement of the flowtube at different locations on the flowtube. Pressure and temperature sensors are positioned to measure a pressure of the fluid. One or more processors are configured to use a phase difference between the sensor signals to determine a fluid flow rate through the flowtube. The one or more processors are further configured to determine an amount of dissolved gas in the multiphase fluid using the pressure, the temperature, and the relative amounts the multiple liquids in the multiphase fluid.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 9, 2018
    Assignee: Schneider Electric Systems USA, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro, Michael S. Tombs, Alice Anne Probst
  • Publication number: 20170219403
    Abstract: A well test system for testing fluids produced from one or more petroleum wells has a separator and a plurality of multiphase flow metering systems, each of which has the capability, over at least a portion of its operating envelope, of separately measuring flow rates of oil, water, and gas. The well test system has a fluidic system, including gas leg conduits coupling the separator to the multiphase flow metering systems, liquid leg conduits coupling separator to the multiphase flow metering systems, and bypass conduits for directing multiphase fluid to the multiphase flow metering systems while bypassing the separator. Valves are configured to selectively route fluid flow though the fluidic system to selectively bypass the separator when the multiphase flow metering systems can be used to provide separate flow rates of oil, water, and gas in the unseparated multiphase fluids from the well.
    Type: Application
    Filed: April 13, 2017
    Publication date: August 3, 2017
    Applicant: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Publication number: 20170167906
    Abstract: A method of assessing flow from an individual well in a set of oil and gas wells includes flowing output from a first subset of the wells collectively to a first flow measurement system through a first conduit while flowing output from a second subset of the wells collectively to a second flow measurement system through a second conduit different from the first conduit. Total flow through the first flow measurement system and total flow through the second measurement system are measured. Output from said individual well is rerouted from one of said first and second measurement systems to the other of said first and second measurement systems. Total flow through at least one of the first and second measurement systems is measured after the re-routing. A difference between the total flow rate before the re-routing and after the re-routing is used to assess flow rate from said individual well.
    Type: Application
    Filed: January 24, 2017
    Publication date: June 15, 2017
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Patent number: 9664548
    Abstract: A well test system for testing fluids produced from one or more petroleum wells has a separator and a plurality of multiphase flow metering systems, each of which has the capability, over at least a portion of its operating envelope, of separately measuring flow rates of oil, water, and gas. The well test system has a fluidic system, including gas leg conduits coupling the separator to the multiphase flow metering systems, liquid leg conduits coupling separator to the multiphase flow metering systems, and bypass conduits for directing multiphase fluid to the multiphase flow metering systems while bypassing the separator. Valves are configured to selectively route fluid flow though the fluidic system to selectively bypass the separator when the multiphase flow metering systems can be used to provide separate flow rates of oil, water, and gas in the unseparated multiphase fluids from the well.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: May 30, 2017
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Patent number: 9618374
    Abstract: Flowmeters are described in which a sensor signal received from a sensor that is attached to vibratable flowtube, so as to determine properties of a fluid within the flowtube, contains a drive signal component and a Coriolis mode component. The flowmeters are operable to determine drive parameters of the drive signal component, as well as Coriolis parameters of the Coriolis mode component. By analyzing the sensor signal based on the drive signal parameters, and not on the Coriolis signal parameters, the flowmeters are able to provide stable and accurate determinations of the properties of the fluid.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 11, 2017
    Assignee: Invensys Systems, Inc.
    Inventor: Manus P. Henry
  • Patent number: 9562427
    Abstract: A net oil and gas well test system for a set of oil and gas wells includes at least two net oil and gas measurement systems and a plurality of valves that are in fluid communication with the individual wells in the set and independently configurable between a first state, in which the valve routes flow to a first net oil and gas measurement system, and a second state, in which the valve routes flow to a second net oil and gas measurement system. Each net oil and gas measurement system suitably has the capability to measure a multiphase flow including oil, gas, and water without separation. For example, each measurement system can include a multiphase Coriolis meter and a water cut meter. Each measurement system suitably includes the capability to provide dynamic uncertainty estimates related to measurement of the multiphase flow.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: February 7, 2017
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Patent number: 9513149
    Abstract: A Coriolis flowmeter has a driver that oscillates a conduit, a first sensor configured to generate a first sensor signal indicative of movement of the conduit at a first location, and a second sensor configured to generate a second sensor signal indicative of movement of the conduit at a second location. The first and second locations are arranged so a phase difference between the first and second signals when the conduit is oscillated by the driver is related to a mass flow rate of the fluid through the flowmeter. A digital signal processor includes a plurality of detectors tuned to a set of different frequencies. The detectors are configured to analyze the first sensor signal in parallel and generate an output indicative of how closely an actual frequency of the first sensor signal matches the frequency to which the respective detector is tuned.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: December 6, 2016
    Assignee: Invensys Systems, Inc.
    Inventor: Manus P. Henry
  • Patent number: 9512709
    Abstract: A multi-phase flow metering system for measuring a multi-phase fluid including oil, water, and gas, includes a Coriolis mass flow meter adapted to measure mass flow rate and density of the multi-phase fluid. The system has a water cut meter adapted to measure the water cut of the multi-phase fluid. A processor is configured to determine the oil mass flow rate of the oil, water mass flow rate of the water, and gas mass flow rate of the gas using the mass flow rate and density from the Coriolis meter and the water cut from the water cut meter. The processor is further configured to determine dynamic estimates of the uncertainty of each of the oil mass flow rate, water mass flow rate, and gas mass flow rate.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 6, 2016
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Publication number: 20160273950
    Abstract: A well test system for testing fluids produced from one or more petroleum wells has a separator and a plurality of multiphase flow metering systems, each of which has the capability, over at least a portion of its operating envelope, of separately measuring flow rates of oil, water, and gas. The well test system has a fluidic system, including gas leg conduits coupling the separator to the multiphase flow metering systems, liquid leg conduits coupling separator to the multiphase flow metering systems, and bypass conduits for directing multiphase fluid to the multiphase flow metering systems while bypassing the separator. Valves are configured to selectively route fluid flow though the fluidic system to selectively bypass the separator when the multiphase flow metering systems can be used to provide separate flow rates of oil, water, and gas in the unseparated multiphase fluids from the well.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Applicant: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Richard P. Casimiro
  • Publication number: 20160252380
    Abstract: A system for metering flow of a fluid has a vibratable flowtube for receiving a multiphase fluid flow. A driver is configured to vibrate the flowtube. A pair of sensors is positioned to detect movement of the flowtube at different locations on the flowtube. Pressure and temperature sensors are positioned to measure a pressure of the fluid. One or more processors are configured to use a phase difference between the sensor signals to determine a fluid flow rate through the flowtube. The one or more processors are further configured to determine an amount of dissolved gas in the multiphase fluid using the pressure, the temperature, and the relative amounts the multiple liquids in the multiphase fluid.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Inventors: Manus P. Henry, Richard P. Casimiro, Michael S. Tombs, Alice Anne Probst
  • Patent number: 9279710
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: March 8, 2016
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Patent number: 9239278
    Abstract: Systems and methods for determining concentrations of components of a multiphase fluid. A first flowmeter receives a fluid flow and generates measurements of the fluid flow. After at least partially separating the fluid flow into mixtures of its components, second and third flowmeters generate measurements of the mixtures. A data processing apparatus operatively coupled to the flowmeters receives the measurements and determines concentrations of the components of the fluid flow. In an embodiment, the measurements are mass flow and density readings.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: January 19, 2016
    Assignee: Invensys Systems, Inc.
    Inventor: Manus P. Henry
  • Patent number: 9234780
    Abstract: A multi-phase process fluid is passed through a vibratable flowtube. Motion is induced in the vibratable flowtube. A first apparent property of the multi-phase process fluid based on the motion of the vibratable flowtube is determined, and an apparent intermediate value associated with the multi-phase process fluid based on the first apparent property is determined. A corrected intermediate value is determined based on a mapping between the intermediate value and the corrected intermediate value. A phase-specific property of a phase of the multi-phase process fluid is determined based on the corrected intermediate value.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: January 12, 2016
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Michael S. Tombs
  • Patent number: 9200936
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: December 1, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Patent number: 9091580
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: July 28, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos