Patents by Inventor Maohong Fan

Maohong Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117140
    Abstract: A high-efficiency, low-energy consumption and environmental-friendly recycling technology for PETE plastic waste is disclosed. The degradation of PETE plastic waste includes a method for attacking the —O— ester linkage in the repeat unit of PETE plastic with water in saturated pressure and CO2 in supercritical (Sc) conditions.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 11, 2024
    Applicants: University of Wyoming, Washington State University
    Inventors: Maohong Fan, Wenyang Lu, Jinwen Zhang
  • Patent number: 11920005
    Abstract: A high-efficiency, low-energy consumption and environmental-friendly recycling technology for PETE plastic waste is disclosed. The degradation of PETE plastic waste includes a method for attacking the —O— ester linkage in the repeat unit of PETE plastic with water in saturated pressure and CO2 in supercritical (Sc) conditions.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 5, 2024
    Assignees: UNIVERSITY OF WYOMING, WASHINGTON STATE UNIVERSITY
    Inventors: Maohong Fan, Wenyang Lu, Jinwen Zhang
  • Patent number: 11814299
    Abstract: Embodiments of the present disclosure generally relate to the recovery and extraction of rare earth elements. More specifically, embodiments of the disclosure relate to methods for separating rare earth elements from coal, coal by-product(s), and/or coal-derived product(s). In an embodiment, a method of removing rare earth elements from a coal-derived product is provided. The method generally includes introducing supercritical CO2 to the coal ash to form a first mixture, introducing a first acid to the first mixture to form a second mixture, and removing a first composition from the second mixture, the first composition comprising the one or more rare earth elements.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: November 14, 2023
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Zaixing Huang
  • Publication number: 20230294071
    Abstract: Embodiments described herein generally relate to compositions for CO2 absorption, desorption, and/or capture and processes for making such compositions. Embodiments described herein also generally relate to processes for CO2 absorption, CO2 desorption, and/or CO2 capture. In an embodiment, a composition for absorbing or desorbing CO2 is provided. The composition includes an organic amine. the composition further includes a carbon organic framework, an ion thereof, or combinations thereof, the carbon organic framework comprising a plurality of carboxylic acids. In another embodiment, a process for capturing CO2 from a gas stream is also provided. The process includes introducing the gas stream with a composition described herein under absorption conditions, the gas stream comprising CO2. The process further includes forming a CO2-enriched composition.
    Type: Application
    Filed: March 17, 2023
    Publication date: September 21, 2023
    Inventors: Maohong FAN, Xia CHEN
  • Patent number: 11478747
    Abstract: A transformational energy efficient technology using ionic liquid (IL) to couple with monoethanolamine (MEA) for catalytic CO2 capture is disclosed. [EMmim+][NTF2?] based catalysts are rationally synthesized and used for CO2 capture with MEA. A catalytic CO2 capture mechanism is disclosed according to experimental and computational studies on the [EMmim+][NTF2?] for the reversible CO2 sorption and desorption.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: October 25, 2022
    Assignees: UNIVERSITY OF WYOMING, GEORGIA TECH RESEARCH CORPORATION
    Inventors: Maohong Fan, Xiaowen Zhang, Yangyan Gao, Armistead G Russell, Xin He
  • Publication number: 20210387144
    Abstract: A transformational energy efficient technology using ionic liquid (IL) to couple with monoethanolamine (MEA) for catalytic CO2 capture is disclosed. [EMmim+][NTF2?] based catalysts are rationally synthesized and used for CO2 capture with MEA. A catalytic CO2 capture mechanism is disclosed according to experimental and computational studies on the [EMmim+][NTF2?] for the reversible CO2 sorption and desorption.
    Type: Application
    Filed: February 17, 2021
    Publication date: December 16, 2021
    Applicants: University of Wyoming, Georgia Tech Research Corporation
    Inventors: Maohong Fan, Xiaowen Zhang, Yangyan Gao, Armistead G. Russell, Xin He
  • Publication number: 20210347652
    Abstract: Embodiments of the present disclosure generally relate to the recovery and extraction of rare earth elements. More specifically, embodiments of the disclosure relate to methods for separating rare earth elements from coal, coal by-product(s), and/or coal-derived product(s). In an embodiment, a method of removing rare earth elements from a coal-derived product is provided. The method generally includes introducing supercritical CO2 to the coal ash to form a first mixture, introducing a first acid to the first mixture to form a second mixture, and removing a first composition from the second mixture, the first composition comprising the one or more rare earth elements.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 11, 2021
    Inventors: Maohong FAN, Zaixing HUANG
  • Publication number: 20210340351
    Abstract: A high-efficiency, low-energy consumption and environmental-friendly recycling technology for PETE plastic waste is disclosed. The degradation of PETE plastic waste includes a method for attacking the —O— ester linkage in the repeat unit of PETE plastic with water in saturated pressure and CO2 in supercritical (Sc) conditions.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 4, 2021
    Inventors: Maohong Fan, Wenyang Lu, Jinwen Zhang
  • Publication number: 20210276876
    Abstract: A clean and low-cost approach for reusing waste residual from coal utilization and sandstone powder is disclosed. The coal waste residual may be produced from any thermal, solvent extraction or combination process. For example, a sustainable and environmentally friendly method for synthesis of beta-silicon carbide (?-SiC) using, for example, the residual of Powder River Basin (PRB) coal extraction derived from ethanol and supercritical CO2 (EtOH-SCC) extraction combined with natural sandstone.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Applicant: University of Wyoming
    Inventors: Maohong Fan, Kaidi Sun, Tongtong Wang, Zhe Chen, Wenyang Lu, Xin He, Weibo Gong, Richard Arthur Horner
  • Patent number: 10800987
    Abstract: Embodiments described herein generally relate to a composite carbonate utilized as a catalyst in coal gasification processes. Methods described herein also include suitable processing conditions for performing coal gasification with the composite catalyst. In certain embodiments the composite catalyst may comprise an alkali carbonate and a transition metal carbonate, for example, an FeCO3—Na2CO3 catalyst. An FeCO3—Na2CO3 catalyst, compared to raw coal, may increase the carbon conversion rate by about two times within the 700° C.-800° C. range due to its ability to reduce the activation energy of gasification by about 30-40%. Compared to pure sodium and pure iron catalysts, the composite catalyst may increase the yields of desired products H2 and CO at 800° C. by 14.8% and 40.2%, respectively.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: October 13, 2020
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Rodolfo Monterrozo
  • Patent number: 10549265
    Abstract: A highly effective catalyst for the preparation of diethyl oxalate using carbon monoxide using Pd/?-Al2O3 and CeO2 as a promoter. High conversion rates with greatly extended catalyst life is achieved with the CeO2-enhanced Pd catalysts. The catalysts can be used for the production of high-value diethyl oxalate, and eventually ethylene glycol, from coal-derived syngas.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 4, 2020
    Assignee: University of Wyoming
    Inventors: Maohong Fan, Erlei Jin
  • Patent number: 10478807
    Abstract: The invention relates to CeO2 and La2O3 for catalyzing Fe2O3—Al2O3 based chemical-looping reforming of CH4 with CO2 (CL-DRM). The reaction performance of all the composite oxygen carriers was evaluated in a fixed-bed reactor at atmospheric pressure condition. The influencing factors, including temperature and time-on-stream (TOS) were investigated. The characteristics of the oxygen carriers were checked with Brunauer-Emmett-Teller (BET) analysis and X-ray diffraction (XRD). The reducibility of the composite materials was elucidated with temperature-programmed reduction by CH4 (CH4-TPR). Preliminary experimental observations suggest that the simultaneous presence of CeO2 and La2O3 can not only enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation and its oxygen releasing rate for fast reaction kinetics, but also improve the reactivity of its reduced form toward CO2 splitting.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 19, 2019
    Inventors: Maohong Fan, Mingchen Tang
  • Patent number: 10093874
    Abstract: Embodiments described herein generally relate to iron carbonate utilized as a catalyst in coal gasification processes. An FeCO3 catalyst is active in both pyrolysis and gasification operations, and may increase carbon conversion rate and reduce the activation energy of coal gasification. Methods described herein also include suitable processing conditions for performing coal gasification with the FeCO3 catalyst.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 9, 2018
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Rodolfo Monterrozo
  • Patent number: 10086364
    Abstract: Embodiments described herein generally relate to hydrogenation catalysts, syntheses of hydrogenation catalysts, and apparatus and methods for hydrogenation. Methods for forming a hydrogenation catalyst may include mixing a silica generating precursor with a copper precursor and adding an ammonium salt to an end pH of between about 5 to about 9. Methods for hydrogenating an oxalate may include forming a reaction mixture by flowing a hydrogenation catalyst to a reactor, flowing a hydrogen source to the reactor, and flowing an oxalate to the reactor, wherein the hydrogenation catalyst has a particle size between about 10 nm to about 40 nm. Methods may further include reacting the oxalate to form ethylene glycol.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: October 2, 2018
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Tiberiu Popa
  • Publication number: 20170354958
    Abstract: The invention relates to CeO2 and La2O3 for catalyzing Fe2O3—Al2O3 based chemical-looping reforming of CH4 with CO2 (CL-DRM). The reaction performance of all the composite oxygen carriers was evaluated in a fixed-bed reactor at atmospheric pressure condition. The influencing factors, including temperature and time-on-stream (TOS) were investigated. The characteristics of the oxygen carriers were checked with Brunauer-Emmett-Teller (BET) analysis and X-ray diffraction (XRD). The reducibility of the composite materials was elucidated with temperature-programmed reduction by CH4 (CH4-TPR). Preliminary experimental observations suggest that the simultaneous presence of CeO2 and La2O3 can not only enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation and its oxygen releasing rate for fast reaction kinetics, but also improve the reactivity of its reduced form toward CO2 splitting.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 14, 2017
    Inventors: Maohong Fan, Mingchen Tang
  • Patent number: 9662639
    Abstract: The invention relates to CeO2 and La2O3 for catalyzing Fe2O3—Al2O3 based chemical-looping reforming of CH4 with CO2 (CL-DRM). The reaction performance of all the composite oxygen carriers was evaluated in a fixed-bed reactor at atmospheric pressure condition. The influencing factors, including temperature and time-on-stream (TOS) were investigated. The characteristics of the oxygen carriers were checked with Brunauer-Emmett-Teller (BET) analysis and X-ray diffraction (XRD). The reducibility of the composite materials was elucidated with temperature-programmed reduction by CH4 (CH4-TPR). Preliminary experimental observations suggest that the simultaneous presence of CeO2 and La2O3 can not only enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation and its oxygen releasing rate for fast reaction kinetics, but also improve the reactivity of its reduced form toward CO2 splitting.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: May 30, 2017
    Inventors: Maohong Fan, Mingchen Tang
  • Patent number: 9579602
    Abstract: Embodiments described herein generally relate to apparatus and methods for reducing CO2 from flue gas. Methods may include performing a chemisorption process in a first reactor comprising using at least a chemisorption solution comprising a sorbent. Methods may also include performing a desorption process treating the chemisorption solution with a powdered desorption catalyst after the chemisorption process has been performed.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: February 28, 2017
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Abdulwahab Tuwati, Mohammed Assiri
  • Patent number: 9550084
    Abstract: A method for removing elements, including heavy metals, from fly ash and from fly ash resulting from removal of SOx/NOx from flue gas using Na2CO3/NaHCO3/trona, is described. An aqueous suspension of the fly ash and/or a solution of the leachate from the fly ash is treated with dissolved ferrous compounds, such as FeSO4.7H2O and/or FeCl2.4H2O, at a chosen initial acidic pH, and the precipitation of the ferrous ions as the solution basifies sequesters the trace elements.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: January 24, 2017
    Assignee: University of Wyoming
    Inventors: Maohong Fan, Morris D. Argyle, Mustafa O. M. Sharrad
  • Publication number: 20160332150
    Abstract: The invention relates to CeO2 and La2O3 for catalyzing Fe2O3—Al2O3 based chemical-looping reforming of CH4 with CO2 (CL-DRM). The reaction performance of all the composite oxygen carriers was evaluated in a fixed-bed reactor at atmospheric pressure condition. The influencing factors, including temperature and time-on-stream (TOS) were investigated. The characteristics of the oxygen carriers were checked with Brunauer-Emmett-Teller (BET) analysis and X-ray diffraction (XRD). The reducibility of the composite materials was elucidated with temperature-programmed reduction by CH4 (CH4-TPR). Preliminary experimental observations suggest that the simultaneous presence of CeO2 and La2O3 can not only enhance the reactivity of Fe2O3—Al2O3 toward CH4 oxidation and its oxygen releasing rate for fast reaction kinetics, but also improve the reactivity of its reduced form toward CO2 splitting.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 17, 2016
    Inventors: Maohong Fan, Mingchen Tang
  • Patent number: 9474999
    Abstract: The invention generally relates to a bi-directional reactor and supported amine sorbent, and more particularly to a method and system for carbon dioxide sequestration utilizing a bi-directional reactor and monoethenalamine (MEA) on a substrate. The bi-directional reactor is configured to reclaim the sorbent material as the sorbent is immobilized during the sorption phase, but is mobilized during desorption phased. The immobilized sorbent reacts with the desired contaminate to absorb and is transported to another reactor during desorption phase, thereby permitting reclamation of the sorbent.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: October 25, 2016
    Inventor: Maohong Fan