Patents by Inventor Marc-Alan Levine

Marc-Alan Levine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7331976
    Abstract: A distal protection device comprising a catheter having a first strut movable from a collapsed configuration to an expanded configuration having a first dimension and a second strut movable from a collapsed configuration to an expanded configuration having a second dimension larger than the first dimension. Movement of the first strut deploys filter material to a first position having a first deployed dimension and movement of the second strut to a first position deploys filter material to a second deployed dimension larger than the first expanded dimension.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: February 19, 2008
    Assignee: Rex Medical, L.P.
    Inventors: James F. McGuckin, Jr., Marc Alan Levine, James Erich Bressler
  • Publication number: 20070299500
    Abstract: A guidewire loaded stent for delivery through a catheter is described herein. The stent delivery assembly can deliver and place a stent within tortuous regions of the body which are accessible to guidewires but inaccessible to stenting catheters. The assembly comprises a guidewire covered in part by a retractable sheath and a radially expandable stent near or at the distal end of the guidewire. The whole assembly is advanced through conventional catheters or it may be used alone. In either case, when the stent is adjacent to a treatment site within the body, the sheath is retracted proximally to expose the stent for radial expansion into contact with the vessel wall. Radio-opaque marker bands are optionally located on either side or both sides of the stent on the guidewire body to aid in visual placement. The assembly can optionally include an expandable balloon on the guidewire for different treatment modalities.
    Type: Application
    Filed: August 31, 2007
    Publication date: December 27, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20070299502
    Abstract: A guidewire loaded stent for delivery through a catheter is described herein. The stent delivery assembly can deliver and place a stent within tortuous regions of the body which are accessible to guidewires but inaccessible to stenting catheters. The assembly comprises a guidewire covered in part by a retractable sheath and a radially expandable stent near or at the distal end of the guidewire. The whole assembly is advanced through conventional catheters or it may be used alone. In either case, when the stent is adjacent to a treatment site within the body, the sheath is retracted proximally to expose the stent for radial expansion into contact with the vessel wall. Radio-opaque marker bands are optionally located on either side or both sides of the stent on the guidewire body to aid in visual placement. The assembly can optionally include an expandable balloon on the guidewire for different treatment modalities.
    Type: Application
    Filed: August 31, 2007
    Publication date: December 27, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20070299501
    Abstract: A guidewire loaded stent for delivery through a catheter is described herein. The stent delivery assembly can deliver and place a stent within tortuous regions of the body which are accessible to guidewires but inaccessible to stenting catheters. The assembly comprises a guidewire covered in part by a retractable sheath and a radially expandable stent near or at the distal end of the guidewire. The whole assembly is advanced through conventional catheters or it may be used alone. In either case, when the stent is adjacent to a treatment site within the body, the sheath is retracted proximally to expose the stent for radial expansion into contact with the vessel wall. Radio-opaque marker bands are optionally located on either side or both sides of the stent on the guidewire body to aid in visual placement. The assembly can optionally include an expandable balloon on the guidewire for different treatment modalities.
    Type: Application
    Filed: August 31, 2007
    Publication date: December 27, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Patent number: 7300460
    Abstract: Described herein are methods and devices that may be useful, for instance, in thrombectomy and embolectomy procedures, stent delivery procedures, and procedures for bridging the neck of an aneurysm. The bifurcated guidewire device described herein comprises a proximal end, a distal end, a length therebetween, and at least one bifurcation branching the guidewire into at least two arms. The arms are controllable, which may be accomplished, e.g., by providing arms constructed of a shape memory material, or by providing mechanical methods to control the arms. The guidewire may have any number of bifurcations branching the guidewire into any number of arms as practicable. The arms may or may not have radio-opaque markers thereon or be constructed of a radio-opaque material. The arms may have webbing or a semi-permeable sac disposed between them to help capture natural or foreign matter therein. The guidewire may be used with or without a catheter.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: November 27, 2007
    Assignee: Counter Clockwise, Inc.
    Inventors: Marc-Alan Levine, Stephen Hebert
  • Publication number: 20070203563
    Abstract: A stent delivery system comprising a hypotube having a proximal end portion, a distal end portion and a first diameter, and a guidewire having a second diameter and a reduced diameter portion having a diameter smaller than the first diameter of the hypotube for receiving a stent. The guidewire is slidably positioned within the hypotube. Flexible material, e.g. collapsible tubing such as shrink tubing, extends from a portion of the hypotube to a portion of the guidewire.
    Type: Application
    Filed: February 7, 2007
    Publication date: August 30, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20070198076
    Abstract: A stent delivery system comprising a hypotube, a guidewire extending beyond a distal end of the hypotube and having a first portion and a second portion. The first portion has a second diameter less than the diameter of the hypotube. The second portion of the guidewire has a third diameter less than the second diameter and forming a reduced diameter portion for receiving a stent. A sheath covers at least a portion of the reduced diameter portion of the guidewire.
    Type: Application
    Filed: February 7, 2007
    Publication date: August 23, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20070185523
    Abstract: This is in the general field of surgical instruments and is specifically a delivery catheter with a flexible, proximally-manipulated hinge or joint region. The inventive catheter may have a balloon region. The catheter may have a shaft of varying flexibility which contains several lumen. The inner, or delivery, lumen generally may be used with a guidewire to access target sites within the body via the flexible, small diameter vessels of the body. The delivery lumen may be also used for placement of occlusive materials, e.g., in an aneurysm. Inflation of the micro-balloon, located near the distal tip of the catheter, is effected using the inflation lumen. The push/pull wire lumen contains a wire, which when manipulated, flexes the catheter's distal tip. The push/pull wire tubing may have a variable thickness to aid in adjusting the degree of flexibility. Moreover, the delivery catheter may be capable of twisting in a helical or corkscrew-like manner for traversing certain vasculature.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 9, 2007
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20070173757
    Abstract: The long nose manipulatable catheter includes a main lumen, a wire lumen with a push-pull wire therethrough, and a flexible joint region. The catheter section includes a control including a handle and a wire control member engaging the push-pull wire for manipulating the flexible joint region. The push-pull wire may be tapered, having a proximal portion of a first diameter and a smaller diameter distal portion. A coil may be placed around the smaller diameter to prevent buckling of the smaller diameter portion. A strapping coil may also disposed around the outside of the catheter, and an outer covering may be disposed around the strapping coil. An outer covering of a mesh may also be disposed around the distal tip of the catheter.
    Type: Application
    Filed: December 19, 2006
    Publication date: July 26, 2007
    Inventors: Marc-Alan Levine, Stephen Hebert, Thomas Breton, David Watson
  • Publication number: 20070088423
    Abstract: The method and apparatus for caged stent delivery is provided herein. The device can be used to position and deliver any type of stent to a preselected treatment site within an intraluminal cavity. The device comprises a tubular portion, a plurality of arms attached to the distal end of the tubular portion, and a mechanism to open the arms. In operation, the caged device carries a stent in a constricted form to the treatment site for deployment. The arms of the cage are then opened, the stent released and deployed, and the device withdrawn. Several methods are provided to open the arms, including various pullwires, a piston, an electrolytic joint, and an activator. The arms may be constructed of a shape memory alloy and opened when shape memory behavior is effected. The device may be used with conventional catheters or used with a stent-loaded guidewire.
    Type: Application
    Filed: November 1, 2006
    Publication date: April 19, 2007
    Inventors: Marc-Alan Levine, Stephen Hebert
  • Patent number: 7169172
    Abstract: A method and apparatus for caged stent delivery is provided herein. The device can be used to position and deliver any type of stent to a preselected treatment site within an intraluminal cavity. The device comprises a tubular portion, a plurality of arms attached to the distal end of the tubular portion, and a mechanism to open the arms. In operation, the caged device carries a stent in a constricted form to the treatment site for deployment. The arms of the cage are then opened, the stent released and deployed, and the device withdrawn. Several methods are provided to open the arms, including various pullwires, a piston, an electrolytic joint, and an activator. The arms may be constructed of a shape memory alloy and opened when shape memory behavior is effected. The device may be used with conventional catheters or used with a stent-loaded guidewire.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: January 30, 2007
    Assignee: Counter Clockwise, Inc.
    Inventors: Marc-Alan Levine, Stephen Hebert
  • Patent number: 7137990
    Abstract: This is in the general field of surgical instruments and is specifically a delivery catheter with a flexible, proximally-manipulated hinge or joint region. The inventive catheter may have a balloon region. The catheter may have a shaft of varying flexibility which contains several lumen. The inner, or delivery, lumen generally may be used with a guidewire to access target sites within the body via the flexible, small diameter vessels of the body. The delivery lumen may be also used for placement of occlusive materials, e.g., in an aneurysm. Inflation of the micro-balloon, located near the distal tip of the catheter, is effected using the inflation lumen. The push/pull wire lumen contains a wire, which when manipulated, flexes the catheter's distal tip. The push/pull wire tubing may have a variable thickness to aid in adjusting the degree of flexibility. Moreover, the delivery catheter may be capable of twisting in a helical or corkscrew-like manner for traversing certain vasculature.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 21, 2006
    Assignee: Micrus Endovascular Corporation
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20060116750
    Abstract: A guidewire loaded stent for delivery through a catheter is described herein. The stent delivery assembly can deliver and place a stent within tortuous regions of the body which are accessible to guidewires but inaccessible to stenting catheters. The assembly comprises a guidewire covered in part by a retractable sheath and a radially expandable stent near or at the distal end of the guidewire. The whole assembly is advanced through conventional catheters or it may be used alone. In either case, when the stent is adjacent to a treatment site within the body, the sheath is retracted proximally to expose the stent for radial expansion into contact with the vessel wall. Radio-opaque marker bands are optionally located on either side or both sides of the stent on the guidewire body to aid in visual placement. The assembly can optionally include an expandable balloon on the guidewire for different treatment modalities.
    Type: Application
    Filed: January 19, 2006
    Publication date: June 1, 2006
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20060036309
    Abstract: A method of delivering a stent comprising providing an elongate guide having a stent coaxially supported on the guide for placement and movement by the guide, providing a tubular sheath member, advancing the elongate guide into the body to provide initial access to a preselected treatment site within the body and to carry and deliver the stent to position the stent at the treatment site, and exposing the stent from the tubular sheath member to enable the stent to move from a first reduced diameter position to a second expanded position.
    Type: Application
    Filed: October 11, 2005
    Publication date: February 16, 2006
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Patent number: 6989024
    Abstract: A guidewire loaded stent for delivery through a catheter is described herein. The stent delivery assembly can deliver and place a stent within tortuous regions of the body which are accessible to guidewires but inaccessible to stenting catheters. The assembly comprises a guidewire covered in part by a retractable sheath and a radially expandable stent near or at the distal end of the guidewire. The whole assembly is advanced through conventional catheters or it may be used alone. In either case, when the stent is adjacent to a treatment site within the body, the sheath is retracted proximally to expose the stent for radial expansion into contact with the vessel wall. Radio-opaque marker bands are optionally located on either side or both sides of the stent on the guidewire body to aid in visual placement. The assembly can optionally include an expandable balloon on the guidewire for different treatment modalities.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: January 24, 2006
    Assignee: Counter Clockwise, Inc.
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20060004329
    Abstract: This is in the general field of surgical instruments and is specifically a delivery catheter with a flexible, proximally-manipulated hinge or joint region. The inventive catheter may have a balloon region. The catheter may have a shaft of varying flexibility which contains several lumen. The inner, or delivery, lumen generally may be used with a guidewire to access target sites within the body via the flexible, small diameter vessels of the body. The delivery lumen may be also used for placement of occlusive materials, e.g., in an aneurysm. Inflation of the micro-balloon, located near the distal tip of the catheter, is effected using the inflation lumen. The push/pull wire lumen contains a wire, which when manipulated, flexes the catheter's distal tip. The push/pull wire tubing may have a variable thickness to aid in adjusting the degree of flexibility. Moreover, the delivery catheter may be capable of twisting in a helical or corkscrew-like manner for traversing certain vasculature.
    Type: Application
    Filed: September 6, 2005
    Publication date: January 5, 2006
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Patent number: 6976991
    Abstract: This is in the general field of surgical instruments and is specifically a delivery catheter with a flexible, proximally-manipulated hinge or joint region. The inventive catheter may have a balloon region. The catheter may have a shaft of varying flexibility which contains several lumen. The inner, or delivery, lumen generally may be used with a guidewire to access target sites within the body via the flexible, small diameter vessels of the body. The delivery lumen may be also used for placement of occlusive materials, e.g., in an aneurysm. Inflation of the micro-balloon, located near the distal tip of the catheter, is effected using the inflation lumen. The push/pull wire lumen contains a wire, which when manipulated, flexes the catheter's distal tip. The push/pull wire tubing may have a variable thickness to aid in adjusting the degree of flexibility. Moreover, the delivery catheter may be capable of twisting in a helical or corkscrew-like manner for traversing certain vasculature.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: December 20, 2005
    Inventors: Stephen Hebert, Marc-Alan Levine
  • Publication number: 20050075661
    Abstract: A long nose manipulatable catheter is described herein. The catheter generally comprises a flexible joint region defining a main lumen and an adjacent wire lumen. The wire lumen has an opening near or at a distal end of the flexible joint region and a push/pull wire can be pushed or pulled through the wire lumen. The catheter assembly may also comprise at least one radio-opaque marker band for securing the push/pull wire. The joint region has a predetermined length sized to affect a flexure of the joint and is generally located at the distal end of the catheter. The joint region itself may be varied to extend distally from where the braid terminates, or it may extend to encompass a portion of the braid. By varying a length of the joint region, the amount of curvature and flexure of the joint region can be controlled.
    Type: Application
    Filed: October 1, 2003
    Publication date: April 7, 2005
    Inventors: Marc-Alan Levine, Stephen Hebert
  • Patent number: 6860893
    Abstract: This is an implantable vaso-occlusive device. The device has a complex, three-dimensional structure in a relaxed configuration that may be used in the approximate shape of an anatomical cavity. It may be deployed in the approximate shape of a sphere, an ovoid, a clover, a box-like structure or other distorted spherical shape. The loops forming the relaxed configuration may pass through the interior of the structure. The device is a self-forming shape made from a pre-formed linear vaso-occlusion member. Fibers may be introduced onto the device and affixed to the pre-formed linear member. The constituent member may be also be covered with a fibrous braid. The device is typically introduced through a catheter. The device is passed axially through the catheter sheath and assumes its form upon exiting the catheter without further action. The invention also includes methods of winding the anatomically shaped vaso-occlusive device into appropriately shaped forms and annealing them to form various devices.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 1, 2005
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: Michael P. Wallace, Marc-Alan Levine, Delilah Yin Hui, Mary M. Chen, Liem Ho
  • Publication number: 20050038467
    Abstract: This is in the general field of surgical instruments and is specifically a delivery catheter with a flexible, proximally-manipulated hinge or joint region. The inventive catheter may have a balloon region. The catheter may have a shaft of varying flexibility which contains several lumen. The inner, or delivery, lumen generally may be used with a guidewire to access target sites within the body via the flexible, small diameter vessels of the body. The delivery lumen may be also used for placement of occlusive materials, e.g., in an aneurysm. Inflation of the micro-balloon, located near the distal tip of the catheter, is effected using the inflation lumen. The push/pull wire lumen contains a wire, which when manipulated, flexes the catheter's distal tip. The push/pull wire tubing may have a variable thickness to aid in adjusting the degree of flexibility. Moreover, the delivery catheter may be capable of twisting in a helical or corkscrew-like manner for traversing certain vasculature.
    Type: Application
    Filed: September 20, 2004
    Publication date: February 17, 2005
    Inventors: Stephen Hebert, Marc-Alan Levine