Patents by Inventor Marc-Andre Nolette

Marc-Andre Nolette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220280782
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Application
    Filed: May 12, 2022
    Publication date: September 8, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Marc-Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Publication number: 20220212013
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc-Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Patent number: 11369787
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: June 28, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Patent number: 11311730
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 26, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral S. Thakkar, Bao Dung Tran
  • Publication number: 20200147366
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 14, 2020
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Marc-Andre NOLETTE, Viral S. THAKKAR, Bao Dung TRAN
  • Patent number: 10512772
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 24, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20190336773
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: July 12, 2019
    Publication date: November 7, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc-Andre NOLETTE, Viral S. THAKKAR, Bao Dung TRAN
  • Patent number: 10391314
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 27, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20170143975
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc-Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Patent number: 9597509
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: March 21, 2017
    Assignee: Simon Fraser University
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20160220822
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Patent number: 9333363
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: May 10, 2016
    Assignee: Simon Fraser University
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20150202448
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc Andre NOLETTE, Viral THAKKAR, Bao Dung TRAN
  • Publication number: 20150045810
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 12, 2015
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran