Patents by Inventor Marc Antonius Maria Haast
Marc Antonius Maria Haast has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8711325Abstract: The invention relates to a method for determining a suppression factor of a suppression system. The suppression system is arranged to suppress migration of a contaminant gas out of a first system. The suppression factor is an indication of the performance of the suppression system. The method includes introducing a tracer gas in the sub-system, providing a detection system configured to detect the amount of tracer gas that has migrated out of the first system, determining a first suppression factor for the suppression system for the tracer gas. The method further includes determining a second suppression factor for the suppression system for the contaminant gas based on the first suppression factor.Type: GrantFiled: November 6, 2008Date of Patent: April 29, 2014Assignee: ASML Netherlands B.V.Inventors: Hendrikus Gijsbertus Schimmel, Tjarko Adriaan Rudolf Van Empel, Hans Johannes Maria Freriks, Yuri Johannes Gabriël Van De Vijver, Gerardus Hubertus Petrus Maria Swinkels, Marc Antonius Maria Haast, Wendelin Johanna Maria Versteeg, Peter Gerardus Jonkers, Dzmitry Labetski
-
Patent number: 8629418Abstract: A sensor for use at substrate level in a high numerical aperture lithographic apparatus, the sensor having a transparent plate that covers a sensing element and includes elements that improve coupling of radiation into the sensing element. The improved coupling elements include a flowing liquid medium disposed between the transparent plate and the sensing element.Type: GrantFiled: November 2, 2006Date of Patent: January 14, 2014Assignee: ASML Netherlands B.V.Inventors: Marcus Adrianus Van De Kerkhof, Haico Victor Kok, Borgert Kruizinga, Timotheus Franciscus Sengers, Bearrach Moest, Marc Antonius Maria Haast, Peter Werner Weissbrodt, Manfred Helmut Gustav Wilhelm Johannes Schrenk, Torsten Harzendorf
-
Patent number: 8426831Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.Type: GrantFiled: February 17, 2012Date of Patent: April 23, 2013Assignee: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
-
Patent number: 8324598Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.Type: GrantFiled: February 17, 2012Date of Patent: December 4, 2012Assignee: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
-
Publication number: 20120268722Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.Type: ApplicationFiled: February 17, 2012Publication date: October 25, 2012Applicant: ASML Netherlands B.V.Inventors: Stoyan NIHTIANOV, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Sholtes
-
Patent number: 8138485Abstract: A radiation detector, a method of manufacturing a radiation detector, and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation sensitive surface. The radiation sensitive surface is sensitive to radiation wavelengths between 10-200 nm and charged particles. The radiation detector has a silicon substrate, a dopant layer, a first electrode, and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the silicon substrate.Type: GrantFiled: June 24, 2008Date of Patent: March 20, 2012Assignee: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Joseph Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
-
Publication number: 20110261329Abstract: The invention relates to a method for determining a suppression factor of a suppression system. The suppression system is arranged to suppress migration of a contaminant gas out of a first system. The suppression factor is an indication of the performance of the suppression system. The method includes introducing a tracer gas in the sub-system, providing a detection system configured to detect the amount of tracer gas that has migrated out of the first system, determining a first suppression factor for the suppression system for the tracer gas. The method further includes determining a second suppression factor for the suppression system for the contaminant gas based on the first suppression factor.Type: ApplicationFiled: November 6, 2008Publication date: October 27, 2011Applicant: ASML Netherlands B.V.Inventors: Hendrikus Gijsbertus Schimmel, Tjarko Adriaan Rudolf Van Empel, Hans Johannes Maria Freriks, Yuri Johannes Gabriël Van De Vijver, Gerardus Hubertus Petrus Maria Swinkels, Marc Antonius Maria Haast, Wendelin Johanna Maria Versteeg, Peter Gerardus Jonkers, Dzmitry Labetski
-
Publication number: 20100091260Abstract: A method and apparatus make use of data representing changes in wavelength of a radiation source to provide control of focal plane position or to provide correction of sensor data. In the first aspect, the wavelength variation data is provided to control systems that control focus by moving apparatus components including, for example, the mask table, the substrate table or optical elements of the projection optical system. In the second aspect, variation data is used in correcting, e.g., focal plane position data measured by an inboard sensor, such as a transmitted image sensor. The two aspects may be combined in a single apparatus or may be used separately.Type: ApplicationFiled: December 22, 2009Publication date: April 15, 2010Applicant: ASML Netherlands B.V.Inventors: Erik Petrus Buurman, Thomas Josephus Maria Castenmiller, Johannes Wilhelmus Maria Cornelis Teeuwsen, Bearrach Moest, Marc Antonius Maria Haast
-
Patent number: 7655367Abstract: A method and apparatus make use of data representing changes in wavelength of a radiation source to provide control of focal plane position or to provide correction of sensor data. In the first aspect, the wavelength variation data is provided to control systems that control focus by moving apparatus components including, for example, the mask table, the substrate table or optical elements of the projection optical system. In the second aspect, variation data is used in correcting, e.g., focal plane position data measured by an inboard sensor, such as a transmitted image sensor. The two aspects may be combined in a single apparatus or may be used separately.Type: GrantFiled: March 21, 2006Date of Patent: February 2, 2010Assignee: ASML Netherlands B.V.Inventors: Erik Petrus Buurman, Thomas Josephus Maria Castenmiller, Johannes Wilhelmus Maria Cornelis Teeuwsen, Bearrach Moest, Marc Antonius Maria Haast
-
Patent number: 7586108Abstract: The invention relates to a radiation detector, a method of manufacturing a radiation detector and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation-sensitive surface. The radiation-sensitive surface is sensitive for radiation with a wavelength between 10-200 nm. The radiation detector has a silicon substrate, a dopant layer, a first electrode and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer which is in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the Silicon substrate.Type: GrantFiled: June 25, 2007Date of Patent: September 8, 2009Assignee: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
-
Publication number: 20090021717Abstract: A radiation detector, a method of manufacturing a radiation detector, and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation sensitive surface. The radiation sensitive surface is sensitive to radiation wavelengths between 10-200 nm and charged particles. The radiation detector has a silicon substrate, a dopant layer, a first electrode, and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the silicon substrate.Type: ApplicationFiled: June 24, 2008Publication date: January 22, 2009Applicant: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus, Joshepus, Maria Kemper, Marc Antonius, Maria Haast, Gerardus Wilhelmus, Petrus, Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas, Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus, Maria Scholtes
-
Publication number: 20080315121Abstract: The invention relates to a radiation detector, a method of manufacturing a radiation detector and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation-sensitive surface. The radiation-sensitive surface is sensitive for radiation with a wavelength between 10-200 nm. The radiation detector has a silicon substrate, a dopant layer, a first electrode and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer which is in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the Silicon substrate.Type: ApplicationFiled: June 25, 2007Publication date: December 25, 2008Applicant: ASML Netherlands B.V.Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
-
Patent number: 7453078Abstract: A sensor for use at substrate level in a high numerical aperature lithographic apparatus, the sensor having a transparent plate that covers a sensing element and includes elements that improve coupling of radiation into the sensing element. The elements include Fresnel lenses, holographic optical elements, inverted Winston Cones, spherical lenses and surface roughening.Type: GrantFiled: September 7, 2007Date of Patent: November 18, 2008Assignee: ASML Netherlands B.V.Inventors: Haico Victor Kok, Marcus Adrianus Van De Kerhof, Borgert Kruizinga, Timotheus Franciscus Sengers, Bearrach Moest, Marc Antonius Maria Haast, Peter Weissbrodt, Manfred Schrenk, Torsten Harzendorf
-
Patent number: 7282701Abstract: A sensor for use at substrate level in a high numerical aperature lithographic apparatus, the sensor having a transparent plate that covers a sensing element and includes elements that improve coupling of radiation into the sensing element. The elements include Fresnel lenses, holographic optical elements, inverted Winston Cones, spherical lenses and surface roughening.Type: GrantFiled: February 28, 2005Date of Patent: October 16, 2007Assignee: ASML Netherlands B.V.Inventors: Haico Victor Kok, Marcus Adrianus Van De Kerhof, Borgert Kruizinga, Timotheus Franciscus Sengers, Bearrach Moest, Marc Antonius Maria Haast, Peter Weissbrodt, Manfred Schrenk, Torsten Harzendorf
-
Patent number: 7145630Abstract: A method and lithographic apparatus in which a surface of a sensor is protected from dissolution in a liquid through application of a bias voltage to the surface with respect to one or more parts which are also exposed to the liquid.Type: GrantFiled: November 23, 2004Date of Patent: December 5, 2006Assignee: ASML Netherlands B.V.Inventors: Bearrach Moest, Marcus Adrianus Van De Kerkhof, Marc Antonius Maria Haast