Patents by Inventor Marc Becker

Marc Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120315366
    Abstract: The invention relates to a sweetener and to a method for the production thereof.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 13, 2012
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Olivier Zehnacker, Thomas Tacke, Thomas Haas, Nicole Brausch, Marc Becker
  • Patent number: 8263279
    Abstract: A system for cooling a fuel cell stack and a drive unit in a fuel cell vehicle is disclosed, wherein the system includes a drive unit and a fuel cell stack. An oil cooling loop for the drive unit includes a three way valve, a liquid to liquid heat exchanger, and a pump. The liquid to liquid heat exchanger may be used to transfer drive unit off heat into the stack coolant loop. By not using an oil to air heat exchanger overall heat exchanger arrangement air side pressure drop can be minimized and airflow increased. The three way valve allows decoupling of the cooling loops if needed to inhibit negative impact on the fuel cell stack.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: September 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Sebastian Lienkamp, Marc Becker
  • Publication number: 20120116140
    Abstract: The invention is a method for processing a mixture containing water, 3-methyl-1-butene and at least one other methylbutene. The method comprises primary distillation of the mixture, giving a gaseous primary overhead product containing methylbutene and water and a water-free primary bottom product containing 3-methyl-1-butene; condensation of the gaseous primary overhead product so as to give a condensate comprising a liquid aqueous phase and a liquid organic phase; separation of the condensate into a liquid aqueous phase and a liquid organic phase; discharge of the liquid aqueous phase; recirculation of the organic phase to the primary distillation; and finally secondary distillation of the water-free primary bottom product from the primary distillation so as to give a secondary overhead product comprising 3-methyl-1-butene and a secondary bottom product. The secondary overhead product obtained has a purity which enables it to be used directly as monomer or comonomer for preparing polymers or copolymers.
    Type: Application
    Filed: April 29, 2010
    Publication date: May 10, 2012
    Applicant: EVONIK OXENO GMBH
    Inventors: Markus Winterberg, Alfred Kaizik, Armin Rix, Michael Grass, Wilfried Bueschken, Marc Becker
  • Publication number: 20120088130
    Abstract: A thermal management system that provides air cooling and heating for a battery by flow-shifting air through a battery enclosure. The battery includes a plurality of battery cells provided in the enclosure. The enclosure includes a first manifold having a first end and second end and second manifold opposite to the first manifold having a first end and second end. The thermal management system includes a plurality of valves for allowing air flow into and out of the first end or the second end of the first manifold and a second valve for allowing air flow into and out of the first end or the second end of the second manifold to provide the flow-shifting.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Marc Becker, Remy Fontaine
  • Publication number: 20120025762
    Abstract: A method and system for controlling temperature in an electric vehicle battery pack such that battery pack longevity is preserved, while vehicle driving range is maximized. A controller prescribes a maximum allowable temperature in the battery pack as a function of state of charge, reflecting evidence that lithium-ion battery pack temperatures can be allowed to increase as state of charge decreases, without having a detrimental effect on battery pack life. During vehicle driving, battery pack temperature is allowed to increase with decreasing state of charge, and a cooling system is only used as necessary to maintain temperature beneath the increasing maximum level. The decreased usage of the cooling system reduces energy consumption and increases vehicle driving range. During charging operations, the cooling system must remove enough heat from the battery pack to maintain temperatures below a decreasing maximum, but this has no impact on driving range.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Sebastian Lienkamp, Remy Fontaine, Marc Becker, Peter Kilian
  • Patent number: 8053126
    Abstract: A fuel cell system that employs a heat exchanger and a charge air cooler for reducing the temperature of the cathode inlet air to a fuel cell stack during certain system operating conditions so that the cathode inlet air is able to absorb more moisture in a water vapor transfer unit. The system can include a valve that selectively by-passes the heat exchanger if the cathode inlet air does not need to be cooled to meet the inlet humidity requirements. Alternately, the charge air cooler can be cooled by an ambient airflow.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 8, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Marc Becker, Christian Koenig, Uwe Hannesen, Erik Schumacher, Steven D. Burch
  • Patent number: 8007946
    Abstract: A method for quickly and efficiently heating a fuel cell stack at system start-up. The method uses and prioritizes various stack heat sources based on their efficiency to heat the stack. A thermal set-point for heating the stack to the desired temperature is determined based on the ambient temperature and, the stack cooling fluid temperature. The set-point is then compared-to the stack heating provided by the heat sources that are operating through normal system start-up operation. If more heat is necessary to reach the set-point, the method may first charge a system battery using stack power where the load causes the fuel cell stack to heat up. If additional heating is still required, the method may then turn on a cooling fluid heater, then flow a small amount of hydrogen into the cathode inlet stream to provide combustion, and then increase the compressor load as needed.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: August 30, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Steven D. Burch, Marc Becker
  • Publication number: 20110207023
    Abstract: A fuel cell system is disclosed that employs an expander for recovering mechanical energy from a cathode exhaust fluid produced by the fuel cell system to generate torque. The expander is coupled to a shaft of a compressor with a freewheel mechanism, wherein the freewheel mechanism transfers the torque from the expander to the compressor when a rate of rotation of a driveshaft of the expander is greater than the rate of rotation of the shaft of the compressor, and selectively militates against the expander acting as a restrictor to the shaft of the compressor when a rate of rotation of the driveshaft of the expander is substantially equal to or less than a rate of rotation of the shaft of the compressor.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 25, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Marc Becker, Remy Fontaine, Thomas W. Tighe
  • Publication number: 20110144391
    Abstract: The invention relates to a device and a method for the continuous reaction of a liquid and a second fluid, wherein the device comprises at least two jet loop reactors interconnected in parallel and common outer liquid recirculation.
    Type: Application
    Filed: July 9, 2009
    Publication date: June 16, 2011
    Applicant: EVONIK OXENO GMBH
    Inventors: Marc Becker, Robert Franke, Wilfried Bueschken, Armin Boerner, Jens Holz
  • Publication number: 20100304261
    Abstract: A fuel cell assembly having a flow distribution subassembly that comprises four sets of flow channels, the first set facing an anode for distribution of a fuel reactant to said anode, the second set facing a cathode for distribution of an oxidant to said cathode, the third set in flow communication with said second set and in heat transfer relation with at least one of said anode and said cathode, and the fourth set receiving a coolant different from said oxidant.
    Type: Application
    Filed: August 13, 2010
    Publication date: December 2, 2010
    Inventors: Volker Formanski, Peter Kilian, Thomas Herbig, Marc Becker, Peter Willimowski
  • Patent number: 7829231
    Abstract: A fuel cell assembly having a flow distribution subassembly that comprises four sets of flow channels, the first set facing an anode for distribution of a fuel reactant to said anode, the second set facing a cathode for distribution of an oxidant to said cathode, the third set in flow communication with said second set and in heat transfer relation with at least one of said anode and said cathode, and the fourth set receiving a coolant different from said oxidant.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: November 9, 2010
    Inventors: Volker Formanski, Peter Kilian, Thomas Herbig, Marc Becker, Peter Willimowski
  • Publication number: 20090208782
    Abstract: A system for cooling a fuel cell stack and a drive unit in a fuel cell vehicle is disclosed, wherein the system includes a drive unit and a fuel cell stack. An oil cooling loop for the drive unit includes a three way valve, a liquid to liquid heat exchanger, and a pump. The liquid to liquid heat exchanger may be used to transfer drive unit off heat into the stack coolant loop. By not using an oil to air heat exchanger overall heat exchanger arrangement air side pressure drop can be minimized and airflow increased. The three way valve allows decoupling of the cooling loops if needed to inhibit negative impact on the fuel cell stack.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventors: Sebastian Lienkamp, Marc Becker
  • Publication number: 20090117422
    Abstract: A fuel cell system that includes a first fuel cell stack and a second fuel cell stack in a divided stack design. A first water vapor transfer unit is used to humidify the cathode inlet to the first divided stack and a second water vapor transfer unit is used to humidify the cathode inlet air to the second divided stack. The cathode exhaust gas from the divided stacks is used to provide the humidification for the water vapor transfer units. In order to provide relative humidity balancing between the first and second divided stacks, the cathode inlet air flowing through one of the WVT units is sent to one of the divided stacks that receives the cathode exhaust gas from the other divided stack and vice versa.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 7, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Thomas Weispfenning, Marc Becker, Matthias Hampel
  • Publication number: 20090081505
    Abstract: A method for quickly and efficiently heating a fuel cell stack at system start-up. The method uses and prioritizes various stack heat sources based on their efficiency to heat the stack. A thermal set-point for heating the stack to the desired temperature is determined based on the ambient temperature and, the stack cooling fluid temperature. The set-point is then compared-to the stack heating provided by the heat sources that are operating through normal system start-up operation. If more heat is necessary to reach the set-point, the method may first charge a system battery using stack power where the load causes the fuel cell stack to heat up. If additional heating is still required, the method may then turn on a cooling fluid heater, then flow a small amount of hydrogen into the cathode inlet stream to provide combustion, and then increase the compressor load as needed.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Abdullah B. Alp, Steven D. Burch, Marc Becker
  • Publication number: 20080081238
    Abstract: A fuel cell system that employs a heat exchanger and a charge air cooler for reducing the temperature of the cathode inlet air to a fuel cell stack during certain system operating conditions so that the cathode inlet air is able to absorb more moisture in a water vapor transfer unit. The system can include a valve that selectively by-passes the heat exchanger if the cathode inlet air does not need to be cooled to meet the inlet humidity requirements. Alternately, the charge air cooler can be cooled by an ambient airflow.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Marc Becker, Christian Koenig, Uwe Hannesen, Erik Schumacher, Steven D. Burch
  • Patent number: 7344787
    Abstract: A multi-stage compressor system that compresses air supplied to a cathode of a fuel cell system includes a first stage compressor that compresses inlet air to provide a first pressurized air stream at a first pressure. A second stage compressor includes a compression unit that compresses the first pressurized air stream to a second pressurized air stream at a second pressure. A drive unit drives the compression unit using expansion energy of an exhaust stream of the fuel cell. A first heat exchanger enables heat transfer between the second pressurized air stream and the exhaust stream to heat the exhaust stream.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: March 18, 2008
    Assignee: General Motors Corporation
    Inventors: Volker Formanski, Peter Kilian, Thomas Herbig, Marc Becker
  • Publication number: 20070141412
    Abstract: A technique for determining the relative humidity of the cathode input airflow to a fuel cell stack that eliminates the need for a dew-point sensor. The cathode input airflow is humidified by a water vapor transfer unit that uses water in the cathode exhaust gas. The technique employs an algorithm that determines the flow of water into the cathode inlet of the stack. In one embodiment, the algorithm determines the volume flow of water through the water vapor transfer unit using the Arrhenius equation, and then converts the water volume flow to a water mole flow. The algorithm then uses the water mole flow through the water vapor transfer unit and the water mole flow of ambient air to determine the water mole flow into the cathode inlet. The algorithm then uses the water mole flow into the cathode inlet to determine the relative humidity of the cathode airflow.
    Type: Application
    Filed: December 15, 2005
    Publication date: June 21, 2007
    Inventors: Marc Becker, Oliver Maier, Peter Willimowski
  • Publication number: 20060240308
    Abstract: A fuel cell assembly having a flow distribution subassembly that comprises four sets of flow channels, the first set facing an anode for distribution of a fuel reactant to said anode, the second set facing a cathode for distribution of an oxidant to said cathode, the third set in flow communication with said second set and in heat transfer relation with at least one of said anode and said cathode, and the fourth set receiving a coolant different from said oxidant.
    Type: Application
    Filed: April 22, 2005
    Publication date: October 26, 2006
    Inventors: Volker Formanski, Peter Kilian, Thomas Herbig, Marc Becker, Peter Willimowski
  • Publication number: 20060110634
    Abstract: A method and apparatus for preventing or at least reducing condensation in a cathode exhaust conduit of a fuel cell is disclosed. The method includes introducing air into the fuel cell through an air intake conduit, removing an exhaust stream from the fuel cell through the cathode exhaust conduit and introducing excess air into the cathode exhaust conduit to prevent or reduce condensation of the exhaust stream in the cathode exhaust conduit. The apparatus includes an air intake conduit for introducing air into the fuel cell, a cathode exhaust conduit for distributing the exhaust stream from the fuel cell and an excess air diversion conduit providing fluid communication between the air intake conduit and the cathode exhaust conduit for diverting air from the air intake conduit and the cathode exhaust conduit.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 25, 2006
    Inventors: Volker Formanski, Robert Schafer, Marc Becker, Dirk Wexel
  • Publication number: 20050095488
    Abstract: A multi-stage compressor system that compresses air supplied to a cathode of a fuel cell system includes a first stage compressor that compresses inlet air to provide a first pressurized air stream at a first pressure. A second stage compressor includes a compression unit that compresses the first pressurized air stream to a second pressurized air stream at a second pressure. A drive unit drives the compression unit using expansion energy of an exhaust stream of the fuel cell. A first heat exchanger enables heat transfer between the second pressurized air stream and the exhaust stream to heat the exhaust stream.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 5, 2005
    Inventors: Volker Formanski, Peter Kilian, Thomas Herbig, Marc Becker