Patents by Inventor Marc Claude Martin

Marc Claude Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890793
    Abstract: The present invention relates to a method for assembling moulded bodies. The invention also relates to a moulded body which comprises a foam and at least one fibre (F), the fibre (F) is within a fibre range (FB2) inside the moulded body and is at least once at least partially divided, wherein at least one fibre (F) is completely divided. The invention further relates to the thus obtained assembled moulded body, and to a panel with contains the assembled moulded body and at least one layer (S1). The invention further relates to a method for producing the panel and to the use of the assembled moulded body and the claimed panel, for example, as a rotor blade in wind turbines.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 6, 2024
    Assignee: BASF SE
    Inventors: Robert Stein, Holger Ruckdaeschel, Rene Arbter, Tim Diehlmann, Gregor Daun, Marc Claude Martin
  • Publication number: 20210395431
    Abstract: Described herein is a process for producing polyurethane foams having a density of 30 g/dm3 to 70 g/dm3, in which (a) aromatic polyisocyanate is mixed with (b) polymeric compounds having isocyanate-reactive groups, (c) optionally chain extender and/or crosslinking agent, (d) catalyst, (e) blowing agent including water, (f) 0.1% to 5% by weight of lactam, and (g) optionally additives, at an isocyanate index of 50 to 95 to form a reaction mixture, and the reaction mixture is converted to the polyurethane foam, wherein the catalyst includes metal catalyst and amine catalyst, and the amine catalyst has tertiary nitrogen atoms and the content of tertiary nitrogen atoms in the amine catalyst is from 0.0001 to 0.003 mol/100 g of foam. Also described herein is a polyurethane foam and a method of using such a flexible polyurethane foam for the production of cushions, seat cushions, or mattresses.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 23, 2021
    Inventors: Markus Schuette, Heinz-Dieter Lutter, Manuela Faehmel, Marc Claude Martin, Peter Deglmann, Joern Duwenhorst
  • Publication number: 20200331179
    Abstract: The present invention relates to a process for converting moldings. Here, a molding comprising a foam and at least one fiber (F), wherein the fiber (F) is with a fiber region (FB2) located inside the molding is at least partially divided at least once, wherein at least one fiber (F) is completely divided. The invention further relates to the thus obtainable converted molding and to a panel comprising the converted molding and at least one layer (S1). The present invention further relates to a process for producing the panel and to the use of the converted molding/the panel according to the invention as a rotor blade in wind turbines for example.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 22, 2020
    Inventors: Robert STEIN, Holger RUCKDAESCHEL, Rene ARBTER, Tim DIEHLMANN, Gregor DAUN, Marc Claude MARTIN
  • Publication number: 20200316907
    Abstract: The present invention relates to a molding which comprises a foam and at least one fiber (F). The fiber (F) has a first part (FT1), a second part (FT2) and a third part (FT3). The third part (FT3) of the fiber (F) connects the first part (FT1) and the second part (FT2) of the fiber (F) and is arranged on a second side of the foam. A first region (FB11) of the first part (FT1) of the fiber (F) and a first region (FB12) of the second part (FT2) of the fiber (F) are located inside the molding and are not in contact. A second region (FB21) of the first part (FT1) of the fiber (F) and a second region (FB22) of the second part (FT2) of the fiber (F) project from a first side of the foam. The present invention further relates to a process for producing the moldings according to the invention and to a panel which comprises the molding according to the invention and at least one layer (S1) and also to a process for producing the panel.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 8, 2020
    Inventors: Robert STEIN, Holger RUCKDAESCHEL, Rene ARBTER, Tim DIEHLMANN, Gregor DAUN, Marc Claude MARTIN
  • Publication number: 20200317879
    Abstract: The present invention relates to a molding made of foam, wherein at least one fiber (F) is located partly within the molding, i.e. is surrounded by the foam. The two ends of the respective fiber (F) not surrounded by the foam thus each project from one side of the molding. The foam is produced by polymerization of a reactive mixture (rM) comprising at least one compound having isocyanate-reactive groups, at least one blowing agent and at least one polyisocyanate.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 8, 2020
    Inventors: Robert Stein, Gianpaolo Tomasi, Ludwig Windeler, Christian Renner, Holger Ruckdaeschel, Tim Diehlmann, Rene Arbter, Marc Claude Martin
  • Patent number: 10543664
    Abstract: The present invention relates to a process for producing a molding made from blowing agent-containing foam comprising at least one fiber (F), wherein the at least one fiber (F) is partially introduced into the blowing agent-containing foam. The two ends of the respective fiber (F) that are not surrounded by the blowing agent-containing foam thus project from one side of the corresponding molding. The present invention also provides the molding as such. The present invention further provides a panel comprising at least one such molding, produced by the process according to the invention, and at least one further layer (S1). The present invention also provides for the production of the panels of the invention and for the use thereof, for example as a rotor blade in wind turbines.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 28, 2020
    Assignee: BASF SE
    Inventors: Holger Ruckdäschel, Rene Arbter, Robert Stein, Daniela Longo-Schedel, Tim Diehlmann, Bangaru Sampath, Peter Gutmann, Alexandre Terrenoire, Markus Hartenstein, Andreas Kirgis, Alessio Morino, Gregor Daun, Marc Claude Martin, Peter Merkel, Thomas Kiciak
  • Publication number: 20180257345
    Abstract: The present invention relates to a process for producing a molding made from blowing agent-containing foam comprising at least one fiber (F), wherein the at least one fiber (F) is partially introduced into the blowing agent-containing foam. The two ends of the respective fiber (F) that are not surrounded by the blowing agent-containing foam thus project from one side of the corresponding molding. The present invention also provides the molding as such. The present invention further provides a panel comprising at least one such molding, produced by the process according to the invention, and at least one further layer (S1). The present invention also provides for the production of the panels of the invention and for the use thereof, for example as a rotor blade in wind turbines.
    Type: Application
    Filed: December 15, 2015
    Publication date: September 13, 2018
    Inventors: Holger RUCKDÄSCHEL, Rene ARBTER, Robert STEIN, Daniela LONGO-SCHEDEL, Tim DIEHLMANN, Bangaru SAMPATH, Peter GUTMANN, Alexandre TERRENOIRE, Markus HARTENSTEIN, Andreas KIRGIS, Alessio MORINO, Gregor DAUN, Marc Claude MARTIN, Peter MERKEL, Thomas KICIAK
  • Publication number: 20170369667
    Abstract: The invention relates to a molding composed of extruded foam, wherein at least one fiber (F) is present with a fiber region (FB2) within the molding and is surrounded by the extruded foam, while a fiber region (FB1) of the fiber (F) projects from a first side of the molding and a fiber region (FB3) of the fiber (F) projects from a second side of the molding, and the extruded foam is produced by an extrusion process comprising the following steps: I) providing a polymer melt in an extruder, II) introducing at least one blowing agent into the polymer melt provided in step I) to obtain a foamable polymer melt, III) extruding the foamable polymer melt obtained in step II) from the extruder through at least one die aperture into an area at lower pressure, with expansion of the foamable polymer melt to obtain an expanded foam, and IV) calibrating the expanded foam from step III) by conducting the expanded foam through a shaping tool to obtain the extruded foam.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 28, 2017
    Inventors: Holger RUCKDÄSCHEL, Rene ARBTER, Robert STEIN, Daniela LONGO-SCHEDEL, Tim DIEHLMANN, Bangaru SAMPATH, Peter GUTMANN, Alexandre TERRENOIRE, Markus HARTENSTEIN, Andreas KIRGIS, Gregor DAUN, Marc Claude MARTIN, Peter MERKEL, Thomas KICIAK, Alessio MORINO
  • Publication number: 20170361545
    Abstract: The present invention relates to a molding made from foam, wherein at least one fiber (F) is partly within the molding, i.e. is surrounded by the foam. The two ends of the respective fibers (F) that are not surrounded by the foam thus each project from one side of the corresponding molding. The foam comprises at least two mutually bonded foam segments.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 21, 2017
    Inventors: Holger RUCKDÄSCHEL, Rene ARBTER, Robert STEIN, Daniela LONGO-SCHEDEL, Tim DIEHLAMAN, Bangaru SAMPATH, Peter GUTMANN, Alexandre TERRENOIRE, Markus HARTENSTEIN, Andreas KIRGIS, Alessio MORINO, Gregor DAUN, Marc Claude MARTIN
  • Publication number: 20120055808
    Abstract: The invention relates to a process for the electrolytic dissociation of hydrogen sulfide dissolved in an amine scrubber solution in an electrolysis cell (11) which has an anode space (9) and a cathode space (15), with the anode space (9) and the cathode space (15) being separated by a membrane (13), in which at least one supporting electrolyte is added to the amine scrubber solution, an anion-conducting membrane is used for separating anode space (9) and cathode space (15) and/or the amine scrubber solution in which the hydrogen sulfide is dissolved comprises at least 10% by volume of potassium N,N-dimethylaminoacetate. The invention further relates to a use of the process.
    Type: Application
    Filed: May 12, 2010
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventors: Marc Claude Martin, Günther Huber, Rüdiger Schmidt, Martin Scholtissek, Heinrich Driever