Patents by Inventor Marc Hartmann

Marc Hartmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9709351
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are fluidically connected with one another via a primary path (37) carrying a primary medium through the ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control (39) controls the flow of the primary medium through the primary path (37) and through the bypass path (38). At least two secondary inlets (42) and two secondary outlets (43) are fluidically connected with one another via at least two secondary paths (44) for carrying at least one secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner and such that the media are separated from one another.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 18, 2017
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Gerd Gaiser, Markus Birgler, Matthias Feuerbach, Marc Hartmann, Jürgen Schweizer, Rouven Egger, Dimitri Penner, Fabian Frobenius, Bernd Weller
  • Patent number: 9709350
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are connected to one another fluidically via a primary path (37) carrying a primary medium through ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control device (39) controls the flow of the primary medium through the primary path (37) and the bypass path (38). A secondary inlet (42) and a secondary outlet (43) are connected to one another fluidically via at least two secondary paths (44) for carrying a secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner with the media separated from one another.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 18, 2017
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Gerd Gaiser, Markus Birgler, Matthias Feuerbach, Marc Hartmann, Jürgen Schweizer, Rouven Egger, Dimitri Penner, Fabian Frobenius
  • Patent number: 9140146
    Abstract: A steam generator (1) is provided for a Rankine cycle, especially for a waste heat recovery device (37) of an internal combustion engine (36), and preferably in a motor vehicle. The steam generator includes: a heat exchanger channel (2), in which a heat exchanger (3) is arranged, and a bypass channel (4) for bypassing the heat exchanger channel (2). A heating fluid can flow through the heat exchanger channel (2) and bypass channel (4) during the operation of the steam generator (1). A medium to be evaporated can flow through the heat exchanger (3) during operation of the steam generator (1). A compact structural shape with high energy efficiency is achieved with the heat exchanger channel (2) enveloping the bypass channel (4).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 22, 2015
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Marc Hartmann, Stefan Geser
  • Publication number: 20150020705
    Abstract: An apparatus (10) for releasing a fluid to the atmosphere comprises a housing (12) for the fluid. The housing can comprise a biodegradable polymer, or a polymer that has been adapted to biodegrade. The polymer can also comprise a component that is reflective to infrared radiation so as to prevent melting of the housing polymer during immersion in or whilst in proximity to flame. The apparatus further comprises a mechanism (30,32,42,50,56,58) for causing the fluid to be released to the atmosphere from the housing. The mechanism can be housed in a second housing (14) that is detachably mounted to the first housing to define a housing unit. Further, a restraint mechanism (34) can be provided for regulating when the fluid is to be released from the housing to the atmosphere. The restraint mechanism can be deactivated once a certain force of apparatus impact with a surface has been reached.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 22, 2015
    Inventors: Marc Hartmann, Derrick Yap
  • Patent number: 8800674
    Abstract: An apparatus (10) for releasing a fluid to the atmosphere comprises a housing (12) for the fluid. The housing can comprise a biodegradable polymer, or a polymer that has been adapted to biodegrade. The polymer can also comprise a component that is reflective to infrared radiation so as to prevent melting of the housing polymer during immersion in or while in proximity to flame. The apparatus further comprises a mechanism (30, 32, 42, 50, 56, 58) for causing the fluid to be released to the atmosphere from the housing. The mechanism can be housed in a second housing (14) that is detachably mounted to the first housing to define a housing unit. Further, a restraint mechanism (34) can be provided for regulating when the fluid is to be released from the housing to the atmosphere. The restraint mechanism can be deactivated once a certain force of apparatus impact with a surface has been reached.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: August 12, 2014
    Inventors: Marc Hartmann, Derrick Yap
  • Publication number: 20140076293
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are fluidically connected with one another via a primary path (37) carrying a primary medium through the ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control (39) controls the flow of the primary medium through the primary path (37) and through the bypass path (38). At least two secondary inlets (42) and two secondary outlets (43) are fluidically connected with one another via at least two secondary paths (44) for carrying at least one secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner and such that the media are separated from one another.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: EBERSPACHER EXHAUST TECHNOLOGY GMBH & CO. KG
    Inventors: Gerd GAISER, Markus BIRGLER, Matthias FEUERBACH, Marc HARTMANN, JÜRGEN SCHWEIZER, Rouven EGGER, Dimitri PENNER, Fabian FROBENIUS, Bernd WELLER
  • Publication number: 20140076292
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are connected to one another fluidically via a primary path (37) carrying a primary medium through ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control device (39) controls the flow of the primary medium through the primary path (37) and the bypass path (38). A secondary inlet (42) and a secondary outlet (43) are connected to one another fluidically via at least two secondary paths (44) for carrying a secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner with the media separated from one another.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: Eberspacher Exhaust Technology GmbH & Co. KG
    Inventors: Gerd GAISER, Markus BIRGLER, Matthias FEUERBACH, Marc HARTMANN, Jürgen SCHWEIZER, Rouven EGGER
  • Publication number: 20100126740
    Abstract: An apparatus (10) for releasing a fluid to the atmosphere comprises a housing (12) for the fluid. The housing can comprise a biodegradable polymer, or a polymer that has been adapted to biodegrade. The polymer can also comprise a component that is reflective to infrared radiation so as to prevent melting of the housing polymer during immersion in or whilst in proximity to flame. The apparatus further comprises a mechanism (30, 32, 42, 50, 56, 58) for causing the fluid to be released to the atmosphere from the housing. The mechanism can be housed in a second housing (14) that is detachably mounted to the first housing to define a housing unit. Further, a restraint mechanism (34) can be provided for regulating when the fluid is to be released from the housing to the atmosphere. The restraint mechanism can be deactivated once a certain force of apparatus impact with a surface has been reached.
    Type: Application
    Filed: April 15, 2008
    Publication date: May 27, 2010
    Inventors: Marc Hartmann, Derrick Yap