Patents by Inventor Marc John Kobayashi

Marc John Kobayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9093941
    Abstract: A system is disclosed for controlling motor switching in a sensorless BLDC motor having a set of three stator windings. A controller unit includes a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage having a plurality of switches receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with an asymmetric pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit also communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 28, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Marc John Kobayashi, Stephen James Sanchez, John L. Melanson, Miroslav Olijaca
  • Patent number: 9088237
    Abstract: A system for controlling motor switching in a sensorless BLDC having a stator with three stator windings and a permanent magnet rotor. The system includes a controller unit comprising a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage controlled by the controller unit has a plurality of switches and drives two windings of the three stator windings with a pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit calculates a threshold at which the power stage will change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses the threshold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 21, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Stephen James Sanchez, Marc John Kobayashi, Branislav Pjetar, John L. Melanson
  • Patent number: 9024561
    Abstract: The system and method disclose for the controlling of motor switching. The system includes a controller unit having a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage has a plurality of switches and receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with a multi-state pulse and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Cirrus Logics, Inc.
    Inventors: Jason William Lawrence, Marc John Kobayashi, John L. Melanson, Miroslav Olijaca
  • Patent number: 9000696
    Abstract: The system discloses structure for synchronizing sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A drive voltage drives a plurality of the stator windings thereby producing a magnetic field. On an undriven stator winding among the stator windings, a voltage induced by the magnetic field is sampled. The induced voltage changes as a function of a magnetic rotor transitioning across a plurality of angular positions. A first value corresponding to the sampled voltage induced on the currentless winding is compared with a commutation threshold to determine a proper commutation point. The system is switched to a next drive configuration of the sequence when the first value surpasses the threshold.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 7, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Stephen James Sanchez, Marc John Kobayashi, Branislav Pjetar
  • Patent number: 8994306
    Abstract: The system and method disclose for the controlling of sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A motor controller controls a power stage that drives two windings of a set of three windings in the motor with pulse width modulated signal. A plurality of voltage values on an undriven winding of the set of three windings are sampled within a window of time, wherein a period beginning when the driven windings are energized and ending when the driven windings are de-energized encompasses the window of time. The sampled voltage values are processed. When the processed voltage values exceed a threshold, the motor controller changes which two windings are driven.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Marc John Kobayashi, Jason William Lawrence, Stephen James Sanchez, John L. Melanson, Miroslav Olijaca
  • Publication number: 20130342141
    Abstract: A system is disclosed for controlling motor switching in a sensorless BLDC motor having a set of three stator windings. A controller unit includes a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage having a plurality of switches receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with an asymmetric pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit also communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
    Type: Application
    Filed: March 14, 2013
    Publication date: December 26, 2013
    Applicant: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Marc John Kobayashi, Stephen James Sanchez, John L. Melanson, Miroslav Oljaca
  • Publication number: 20130342146
    Abstract: The system and method disclose for the controlling of motor switching. The system includes a controller unit having a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage has a plurality of switches and receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with a multi-state pulse and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 26, 2013
    Applicant: Cirrus Logis, Inc.
    Inventors: Jason William Lawrence, Marc John Kobayashi, John L. Melanson, Miroslav Oljaca
  • Publication number: 20130342145
    Abstract: The system and method disclose for the controlling of sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A motor controller controls a power stage that drives two windings of a set of three windings in the motor with pulse width modulated signal. A plurality of voltage values on an undriven winding of the set of three windings are sampled within a window of time, wherein a period beginning when the driven windings are energized and ending when the driven windings are de-energized encompasses the window of time. The sampled voltage values are processed. When the processed voltage values exceed a threshold, the motor controller changes which two windings are driven.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 26, 2013
    Applicant: Cirrus Logic, Inc.
    Inventors: Marc John Kobayashi, Jason William Lawrence, Stephen James Sanchez, John L. Melanson, Miroslav Oljaca
  • Publication number: 20130314009
    Abstract: The system discloses structure for synchronizing sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A drive voltage drives a plurality of the stator windings thereby producing a magnetic field. On an undriven stator winding among the stator windings, a voltage induced by the magnetic field is sampled. The induced voltage changes as a function of a magnetic rotor transitioning across a plurality of angular positions. A first value corresponding to the sampled voltage induced on the currentless winding is compared with a commutation threshold to determine a proper commutation point. The system is switched to a next drive configuration of the sequence when the first value surpasses the threshold.
    Type: Application
    Filed: March 13, 2013
    Publication date: November 28, 2013
    Inventors: Stephen James Sanchez, Marc John Kobayashi, Branislav Pjetar
  • Publication number: 20130314017
    Abstract: A system for controlling motor switching in a sensorless BLDC having a stator with three stator windings and a permanent magnet rotor. The system includes a controller unit comprising a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage controlled by the controller unit has a plurality of switches and drives two windings of the three stator windings with a pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit calculates a threshold at which the power stage will change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses the threshold.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 28, 2013
    Inventors: Stephen James Sanchez, Marc John Kobayashi, Branislav Pjetar, John L. Melanson