Patents by Inventor Marc Lajoie

Marc Lajoie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230313167
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: February 24, 2023
    Publication date: October 5, 2023
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Publication number: 20230159615
    Abstract: The preset disclosure provides chimeric polypeptides comprising a cage polypeptide comprising a degron, wherein the degron is sequestered or caged. Upon activation by a key polypeptide, the degron becomes active. The degron can recruit an ubiquitin ligase and a lysine in the degron or surrounding sequence be ubiquitinated. The ubiquitinated chimeric polypeptide is marked for degradation, together with any biologically active molecule attached to the chimeric polypeptide. The chimeric polypeptides of the present disclosure can be incorporated, for example, to chimeric antigen receptors (CAR). Accordingly, in response to the administration of a key polypeptide or endogenous expression of a key polypeptide mediated, for example, by an inducible promoter, the amount of CAR expressed on the surface of an immune cell can be modulated.
    Type: Application
    Filed: July 14, 2022
    Publication date: May 25, 2023
    Inventors: Howell MOFFETT, Robert LANGAN, Thaddeus DAVENPORT, Scott BOYKEN, Marc LAJOIE
  • Publication number: 20230022654
    Abstract: The present disclosure relates to polynucleotides encoding a chimeric polypeptide comprising a c-Jun polypeptide, a ROR1-binding protein, and a truncated EGF receptor. Also provided are cells (e.g., T cells) expressing CARs comprising a ROR1-binding protein and overexpressing a c-Jun polypeptide. Overexpression of c-Jun in CAR T cells confers improved properties, e.g., reducing or preventing exhaustion.
    Type: Application
    Filed: February 24, 2022
    Publication date: January 26, 2023
    Applicant: Lyell Immunopharma, Inc.
    Inventors: Spencer PARK, Queenie VONG, Blythe SATHER, Byoung RYU, Marc LAJOIE, Howell MOFFETT, Brian WEITZNER, Yun SONG, Scott BOYKEN, Neeraj SHARMA, Shobha POTLURI, Bijan BOLDAJIPOUR
  • Publication number: 20220307039
    Abstract: Disclosed herein are polynucleotides comprising a nucleotide sequence encoding an AP-1 transcription factor (i.e., c-Jun). In some aspects, the nucleotide sequence is codon-optimized. In some aspects, the polynucleotides comprise one or more additional nucleotide sequences encoding a linker, signal peptide, antigen-binding domain, spacer, transmembrane domain, costimulatory domain, intracellular signaling domain, truncated EGFR, and combinations thereof. Also disclosed herein are cells, vectors, and pharmaceutical compositions comprising such polynucleotides. The use of such polynucleotides, cells, vectors, and pharmaceutical compositions to treat a disease or disorder (e.g., cancer) is also provided.
    Type: Application
    Filed: February 24, 2022
    Publication date: September 29, 2022
    Applicant: Lyell Immunopharma, Inc.
    Inventors: Spencer PARK, Queenie VONG, Blythe SATHER, Byoung RYU, Marc LAJOIE
  • Publication number: 20220119467
    Abstract: Provided are molecular feedback circuits employing caged-degrons. Aspects of such circuits include the use of a caged-degron to modulate the output of a signaling pathway in a feedback-controlled manner. Also provided are nucleic acids encoding molecular circuits and cells containing such nucleic acids. Methods of using caged-degron-based molecular feedback circuits are also provided, including e.g., methods of modulating a signaling pathway of a cell that include genetically modifying the cell with a caged-degron-based molecular feedback circuit.
    Type: Application
    Filed: January 6, 2020
    Publication date: April 21, 2022
    Inventors: David Baker, Scott Boyken, Hana El-Samad, Marc Lajoie, Robert Langan, Andrew Ng
  • Publication number: 20220091099
    Abstract: Gene editing can be performed by introducing gene-editing components into a cell by mechanical cell disruption. Related apparatus, systems, techniques, and articles are also described.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 24, 2022
    Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Armon R. Sharei, Marc Lajoie, Klavs F. Jensen, Robert S. Langer
  • Publication number: 20220073565
    Abstract: Disclosed herein are non-naturally occurring cage polypeptides, kits and degron LOCKRs including the cage polypep-tides, and uses thereof, wherein the cage polypeptides include (a) a helical bundle, comprising between 2 and 7 alpha-helices, wherein the helical bundle includes: (i) a structural region; and (ii) a latch region, wherein the latch region composes a degron located within the latch region, wherein the structural region interacts with the latch region to prevent activity of the degron; and (b) amino acid linkers connecting each alpha helix
    Type: Application
    Filed: January 6, 2020
    Publication date: March 10, 2022
    Inventors: Robert LANGAN, Andrew NG, Scott BOYKEN, Marc LAJOIE, Hana EL-SAMAD, David BAKER
  • Publication number: 20210340519
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: June 2, 2021
    Publication date: November 4, 2021
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Patent number: 11125739
    Abstract: Gene editing can be performed by introducing gene-editing components into a cell by mechanical cell disruption. Related apparatus, systems, techniques, and articles are also described. The methods and systems of the invention solve the problem of intracellular delivery of gene editing components and gene editing complexes to target cells. The results described herein indicate that delivery of gene editing components, e.g., protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), by mechanical disruption of cell membranes leads to successful gene editing. Because intracellular delivery of gene editing materials is a current challenge, the methods provide a robust mechanism to engineer target cells without the use of potentially harmful viral vectors or electric fields.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: September 21, 2021
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Armon R. Sharei, Marc Lajoie, Klavs F. Jensen, Robert S. Langer
  • Patent number: 11028383
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 8, 2021
    Assignees: University of Washington, University of Utah Research Foundation
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Publication number: 20200224186
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: November 6, 2019
    Publication date: July 16, 2020
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Patent number: 10501733
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: December 10, 2019
    Assignees: University of Washington, University of Utah Research Foundation
    Inventors: Neil King, Wesley Sundquist, Joerg Votteler, Yang Hsia, David Baker, Jacob Bale, Marc Lajoie, Gabriel Butterfield, Elizabeth Gray, Daniel Stetson
  • Publication number: 20180030429
    Abstract: The application discloses multimeric assemblies including multiple oligomeric substructures, where each oligomeric substructure includes multiple proteins that self-interact around at least one axis of rotational symmetry, where each protein includes one or more polypeptide-polypeptide interface (“O interface”); and one or more polypeptide domain that is capable of effecting membrane scission and release of an enveloped multimeric assembly from a cell by recruiting the ESCRT machinery to the site of budding by binding to one or more proteins in the eukaryotic ESCRT complex (“L domain”); and where the multimeric assembly includes one or more subunits comprising one or more polypeptide domain that is capable of interacting with a lipid bilayer (“M domain”), as well as membrane-enveloped versions of the multimeric assemblies.
    Type: Application
    Filed: February 29, 2016
    Publication date: February 1, 2018
    Inventors: Neil KING, Wesley SUNDQUIST, Joerg VOTTELER, Yang HSIA, David BAKER, Jacob BALE, Marc LAJOIE, Gabriel BUTTERFIELD, Elizabeth GRAY, Daniel STETSON
  • Publication number: 20180003696
    Abstract: Gene editing can be performed by introducing gene-editing components into a cell by mechanical cell disruption. Related apparatus, systems, techniques, and articles are also described. The methods and systems of the invention solve the problem of intracellular delivery of gene editing components and gene editing complexes to target cells. The results described herein indicate that delivery of gene editing components, e.g., protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), by mechanical disruption of cell membranes leads to successful gene editing. Because intracellular delivery of gene editing materials is a current challenge, the methods provide a robust mechanism to engineer target cells without the use of potentially harmful viral vectors or electric fields.
    Type: Application
    Filed: January 12, 2016
    Publication date: January 4, 2018
    Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Armon R. SHAREI, Marc LAJOIE, Klavs F. JENSEN, Robert S. LANGER
  • Patent number: 7621516
    Abstract: The invention refers to a method and an apparatus for gathering flat printed products by selecting a single printed product from each of a multitude of collections of identical printed products and conveying the selected printed products towards a collecting conveyor (10), which runs along a generally straight line in a first direction (11).
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: November 24, 2009
    Assignee: Systemes Feuiltault Solutions Inc.
    Inventors: Dominique Feuiltault, Marc Lajoie
  • Publication number: 20080258377
    Abstract: The invention refers to a method and an apparatus for gathering flat printed products by selecting a single printed product from each of a multitude of collections of identical printed products and conveying the selected printed products towards a collecting conveyor (10), which runs along a generally straight line in a first direction (11).
    Type: Application
    Filed: March 18, 2005
    Publication date: October 23, 2008
    Applicant: SYSTEMES FEUILTAULT SOLUTIONS INC.
    Inventors: Dominique Feuiltault, Marc Lajoie