Patents by Inventor Marc Mignard

Marc Mignard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8487846
    Abstract: A method for sensing the actuation and/or release voltages of a electromechanical system or a microelectromechanical device include applying a varying voltage to the device and sensing its state and different voltage levels. In one embodiment, the device is part of a system comprising an array of interferometric modulators suitable for a display. The method can be used to compensate for temperature dependent changes in display pixel characteristics.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Marc Mignard, Clarence Chui, Mithran C Mathew, Jeffrey B Sampsell
  • Patent number: 8386201
    Abstract: Various methods are described to characterize interferometric modulators or similar devices. Measured voltages across interferometric modulators may be used to characterize transition voltages of the interferometric modulators. Measured currents may be analyzed by integration of measured current to provide an indication of a dynamic response of the interferometric modulator. Frequency analysis may be used to provide an indication of a hysteresis window of the interferometric modulator or mechanical properties of the interferometric modulator. Capacitance may be determined through signal correlation, and spread-spectrum analysis may be used to minimize the effect of noise or interference on measurements of various interferometric modulator parameters.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 26, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Alok Govil, Marc Mignard, Kasra Khazeni
  • Patent number: 8368997
    Abstract: In certain embodiments, a microelectromechanical (MEMS) device includes a movable element over the substrate and an actuation electrode. The movable element includes an electrically conductive deformable layer and a reflective element mechanically coupled to the deformable layer. The reflective element includes a reflective surface. The actuation electrode is under at least a portion of the deformable layer and is disposed laterally from the reflective surface. The movable element is responsive to a voltage difference applied between the actuation electrode and the movable element by moving towards the actuation electrode.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 5, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Denis Endisch, Marc Mignard
  • Patent number: 8305394
    Abstract: A system and method for processing video data are disclosed. In one aspect, a method includes generating halftone data for a first video frame and generating halftone data for a second video frame. The method further includes, to reduce at least one visual artifact, selectively copying the halftone data for the first video frame into the halftone data for the second video frame, the selective copying being based upon a comparison between a predetermined fixed threshold and the difference in the human visual system model-based perceptual error of the originally generated halftone data for the second video frame and the human visual system model-based perceptual error of the halftone data for the second video frame after the copying is done.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 6, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Hamood-Ur Rehman, Marc Mignard, Clarence Chui
  • Publication number: 20120235981
    Abstract: A method for sensing the actuation and/or release voltages of a electromechanical system or a microelectromechanical device include applying a varying voltage to the device and sensing its state and different voltage levels. In one embodiment, the device is part of a system comprising an array of interferometric modulators suitable for a display. The method can be used to compensate for temperature dependent changes in display pixel characteristics.
    Type: Application
    Filed: May 30, 2012
    Publication date: September 20, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Marc Mignard, Clarence Chui, Mithran C. Mathew, Jeffrey B. Sampsell
  • Patent number: 8270056
    Abstract: An electromechanical systems device includes a plurality of supports disposed over a substrate and a deformable reflective layer disposed over the plurality of supports. The deformable reflective layer includes a plurality of substantially parallel columns extending in a first direction. Each column has one or more slots extending in a second direction generally perpendicular to the first direction. The slots can be created at boundary edges of sub-portions of the columns so as to partially mechanically separate the sub-portions without electrically disconnecting them. A method of fabricating an electromechanical device includes depositing an electrically conductive deformable reflective layer over a substrate, removing one or more portions of the deformable layer to form a plurality of electrically isolated columns, and forming at least one crosswise slot in at least one of the columns.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: September 18, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Yi Tao, Fan Zhong, Marc Mignard
  • Patent number: 8207920
    Abstract: A method for sensing the actuation and/or release voltages of a electromechanical system or a microelectromechanical device include applying a varying voltage to the device and sensing its state and different voltage levels. In one embodiment, the device is part of a system comprising an array of interferometric modulators suitable for a display. The method can be used to compensate for temperature dependent changes in display pixel characteristics.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: June 26, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Marc Mignard, Clarence Chui, Mithran C. Mathew, Jeffrey B. Sampsell
  • Publication number: 20120037790
    Abstract: Modulator devices are selectably adjustable between at least two states, wherein the transmission and/or reflection of particular wavelengths of light are modified. Certain modulator devices are substantially uniformly adjustable over a wide range of wavelengths, including visible and infrared wavelengths. Other modulator devices are adjustable over visible wavelengths without significantly affecting infrared wavelengths. In addition, the modulator devices may be used in conjunction with fixed thin film reflective structures.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Kasra Khazeni, Manish Kothari, Marc Mignard, Gang Xu, Russell W. Gruhlke
  • Patent number: 8054527
    Abstract: Modulator devices are selectably adjustable between at least two states, wherein the transmission and/or reflection of particular wavelengths of light are modified. Certain modulator devices are substantially uniformly adjustable over a wide range of wavelengths, including visible and infrared wavelengths. Other modulator devices are adjustable over visible wavelengths without significantly affecting infrared wavelengths. In addition, the modulator devices may be used in conjunction with fixed thin film reflective structures.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: November 8, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Kasra Khazeni, Manish Kothari, Marc Mignard, Gang Xu, Russell W. Gruhlke
  • Publication number: 20110261370
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for detecting proximity and/or color of an object. In one aspect, an optical sensor includes a plurality of transmissive interferometric elements, a plurality of detectors positioned to detect the presence and/or intensity of light transmitted through the elements, and a processor to determine the proximity of an object based at least in part upon input from the detectors. An optical signal can be sensed by selectively actuating certain elements in a set of transmissive interferometric elements in an array to allow transmission of optical signals within a first spectrum through the array, and detecting optical signals transmitted through the array.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 27, 2011
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Floyd, Tsongming Kao, Marc Mignard, Suryaprakash Ganti, Manish Kothari
  • Patent number: 8009347
    Abstract: A displaying apparatus that includes a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements. A method of manufacturing a displaying apparatus that includes forming a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: August 30, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Mithran C Mathew, Marc Mignard
  • Patent number: 8004743
    Abstract: Methods and systems for providing brightness control in an interferometric modulator (IMOD) display are provided. In one embodiment, an interferometric modulator display pixel is provided that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum, and a color absorber located substantially in front of the interferometric modulator display pixel, in which the color absorber has an associated second color spectrum. The microelectromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to the second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 23, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Marc Mignard
  • Publication number: 20110170168
    Abstract: In certain embodiments, a microelectromechanical (MEMS) device includes a movable element over the substrate and an actuation electrode. The movable element includes an electrically conductive deformable layer and a reflective element mechanically coupled to the deformable layer. The reflective element includes a reflective surface. The actuation electrode is under at least a portion of the deformable layer and is disposed laterally from the reflective surface. The movable element is responsive to a voltage difference applied between the actuation electrode and the movable element by moving towards the actuation electrode.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Denis Endisch, Marc Mignard
  • Publication number: 20110096056
    Abstract: Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
    Type: Application
    Filed: January 5, 2011
    Publication date: April 28, 2011
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Manish Kothari, Marc Mignard, Mithran C. Mathew, Jeffrey B. Sampsell
  • Patent number: 7928940
    Abstract: Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: April 19, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Manish Kothari, Marc Mignard, Mithran C. Mathew, Jeffrey B. Sampsell
  • Patent number: 7920319
    Abstract: In certain embodiments, a microelectromechanical (MEMS) device comprises a substrate having a top surface, a movable element over the substrate, and an actuation electrode disposed laterally from the reflective surface. The movable element comprises a deformable layer and a reflective element mechanically coupled to the deformable layer. The reflective element includes a reflective surface. The movable element is responsive to a voltage difference applied between the actuation electrode and the movable element by moving in a direction generally perpendicular to the top surface of the substrate.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 5, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Denis Endisch, Marc Mignard
  • Publication number: 20110075247
    Abstract: A displaying apparatus that includes a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements. A method of manufacturing a displaying apparatus that includes forming a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Mithran C. Mathew, Marc Mignard
  • Patent number: 7889163
    Abstract: Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: February 15, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Manish Kothari, Marc Mignard, Mithran C. Mathew, Jeffrey B. Sampsell
  • Publication number: 20110032427
    Abstract: A system and method for processing video data are disclosed. In one aspect, a method includes generating halftone data for a first video frame and generating halftone data for a second video frame. The method further includes, to reduce at least one visual artifact, selectively copying the halftone data for the first video frame into the halftone data for the second video frame, the selective copying being based upon a comparison between a predetermined fixed threshold and the difference in the human visual system model-based perceptual error of the originally generated halftone data for the second video frame and the human visual system model-based perceptual error of the halftone data for the second video frame after the copying is done.
    Type: Application
    Filed: June 4, 2010
    Publication date: February 10, 2011
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Hamood-Ur Rehman, Marc Mignard, Clarence Chui
  • Patent number: 7884989
    Abstract: An iterferometric modulator array is configured to reflect a broad band spectrum of optical wavelengths by arranging a reflector and a partially transparent substrate in a non-parallel relationship.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: February 8, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings, Ming-Hau Tung, Lior Kogut, Marc Mignard