Patents by Inventor Marc-Oliver Gewaltig
Marc-Oliver Gewaltig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240370713Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 11, 2024Publication date: November 7, 2024Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 11983620Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: GrantFiled: April 8, 2022Date of Patent: May 14, 2024Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Publication number: 20220230052Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 8, 2022Publication date: July 21, 2022Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 11301750Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: GrantFiled: April 2, 2018Date of Patent: April 12, 2022Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Publication number: 20180285716Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 2, 2018Publication date: October 4, 2018Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 7356185Abstract: For object recognition, an image is segmented into areas of similar homogeneity at a coarse scale, which are then interpreted as surfaces. Information from different spatial scales and different image features is simultaneously evaluated by exploiting statistical dependencies on their joint appearance. Thereby, the local standard deviation of specific gray levels in the close environment of an observed pixel serves as a measure for local image homogeneity that is used to get an estimate of dominant global object contours. This information is then used to mask the original image. Thus, a fine-detailed edge detection is only applied to those parts of an image where global contours exist. After that, said edges are subject to an orientation detection. Moreover, noise and small details can be suppressed, thereby contributing to the robustness of object recognition.Type: GrantFiled: June 5, 2003Date of Patent: April 8, 2008Assignee: Honda Research Institute Europe GmbHInventors: Marc-Oliver Gewaltig, Edgar Körner, Ursula Körner
-
Publication number: 20040037466Abstract: For object recognition, an image is segmented into areas of similar homogeneity at a coarse scale, which are then interpreted as surfaces. Information from different spatial scales and different image features is simultaneously evaluated by exploiting statistical dependencies on their joint appearance. Thereby, the local standard deviation of specific gray levels in the close environment of an observed pixel serves as a measure for local image homogeneity that is used to get an estimate of dominant global object contours. This information is then used to mask the original image. Thus, a fine-detailed edge detection is only applied to those parts of an image where global contours exist. After that, said edges are subject to an orientation detection. Moreover, noise and small details can be suppressed, thereby contributing to the robustness of object recognition.Type: ApplicationFiled: June 5, 2003Publication date: February 26, 2004Inventors: Marc-Oliver Gewaltig, Edgar Korner, Ursula Korner