Patents by Inventor Marc Schrier

Marc Schrier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220220579
    Abstract: A method of preparing remediated MoO3 from naturally-occurring molybdenum, or molybdenum that is enriched in one, the other or both of Mo-98 and Mo-100 isotopes from a particulate rhenium-containing MoO3 matrix that contains one, the other or both of those isotopes is disclosed as is the product remediated MoO3 that contains less than about 1000 ppt rhenium. In accordance with the invention, particulate rhenium-containing MoO3 matrix is heated in the presence of an oxygen-containing gaseous stream to a temperature of greater than about 300° C. and less than about 800° C. The temperature and oxidative sparging are maintained for a time sufficient to assure that rhenium has been oxidized to rhenium(VII), diffuses to form the dimer (Re2O7), and is then vaporizingly removed as Re2O7, while retaining the remediated MoO3.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Applicant: Output Enablers LLC, d/b/a Calchemist
    Inventor: Marc Schrier
  • Patent number: 8603362
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 10, 2013
    Assignee: Life Technologies Corporation
    Inventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel
  • Patent number: 8287761
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: October 16, 2012
    Assignee: Life Technologies Corporation
    Inventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel
  • Publication number: 20120148501
    Abstract: A solution comprising a defined concentration of purified tantalum clusters in a solvent selected from the group consisting of water, ethanol, ethylene glycol and propylene glycol; wherein said defined concentration is greater than 100 mM, preferably greater than 150 mM; most preferably greater than 300 mM. The purified tantalum clusters are obtained by sequentially washing crude tantalum clusters containing residual chloride ions with aqueous hydrochloric acid to remove residual sodium chloride; and washing the hydrochloric acid-washed tantalum clusters with diethyl ether to remove residual hydrochloric acid and water.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Inventors: Fred Geisler, Marc Schrier, Mihai Buretea
  • Publication number: 20100059713
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Application
    Filed: June 15, 2009
    Publication date: March 11, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marc Schrier, Donald A. Zehnder, Joseph A. Treadway, Joseph A. Bartel
  • Publication number: 20070125983
    Abstract: Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 7, 2007
    Applicant: INVITROGEN CORPORATION
    Inventors: Joseph Treadway, Donald Zehnder, Marc Schrier
  • Publication number: 20060057382
    Abstract: Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.
    Type: Application
    Filed: November 9, 2004
    Publication date: March 16, 2006
    Inventors: Joseph Treadway, Donald Zehnder, Marc Schrier
  • Publication number: 20050214536
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Application
    Filed: December 13, 2004
    Publication date: September 29, 2005
    Applicant: QUANTUM DOT CORPORATION
    Inventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel