Patents by Inventor Marc Sherwin

Marc Sherwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629767
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 21, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
  • Publication number: 20190131480
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: NARSINGH B. SINGH, JOHN V. VELIADIS, BETTINA NECHAY, ANDRE BERGHMANS, DAVID J. KNUTESON, DAVID KAHLER, BRIAN WAGNER, MARC SHERWIN
  • Patent number: 10211359
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: February 19, 2019
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
  • Publication number: 20170194527
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Application
    Filed: November 18, 2016
    Publication date: July 6, 2017
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: NARSINGH B. SINGH, JOHN V. VELIADIS, BETTINA NECHAY, ANDRE BERGHMANS, DAVID J. KNUTESON, DAVID KAHLER, BRIAN WAGNER, MARC SHERWIN
  • Patent number: 9570646
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: February 14, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Narsingh B. Singh, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
  • Publication number: 20150236186
    Abstract: An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 20, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: NARSINGH B. SINGH, John V. Veliadis, Bettina Nechay, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, Marc Sherwin
  • Patent number: 7830644
    Abstract: Methods of producing polycrystalline and single crystal dielectrics are disclosed, including dielectrics comprising CaCu3Ti4O12 or La3Ga5SiO4. Superior single crystals are manufactured with improved crystallinity by atomic lattice constant adjustments to the dielectric and to the substrate on which it is grown. Dielectric materials made according to the disclosed methods are useful for manufacture of energy storage devices, e.g. capacitors.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: November 9, 2010
    Assignee: Northop Grumman Systems Corporation
    Inventors: Narsingh B. Singh, John J. Talvacchio, Marc Sherwin, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, John D. Adam
  • Publication number: 20080218940
    Abstract: Methods of producing polycrystalline and single crystal dielectrics are disclosed, including dielectrics comprising CaCu3Ti4O12 or La3Ga5SiO4. Superior single crystals are manufactured with improved crystallinity by atomic lattice constant adjustments to the dielectric and to the substrate on which it is grown. Dielectric materials made according to the disclosed methods are useful for manufacture of energy storage devices, e.g. capacitors.
    Type: Application
    Filed: March 5, 2007
    Publication date: September 11, 2008
    Applicant: Northrop Grumman Systems Corporation
    Inventors: Narsingh B. Singh, John J. Talvacchio, Marc Sherwin, Andre Berghmans, David J. Knuteson, David Kahler, Brian Wagner, John D. Adam