Patents by Inventor Marc Stephen Ramirez

Marc Stephen Ramirez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230247758
    Abstract: A printed circuit board (PCB) including a rigid dielectric layer having a curved geometry, and a conductive layer attached to the dielectric layer. A method for making a printed circuit board (PCB) including depositing a layer of dielectric material onto a surface, curing and sintering the material on the surface, depositing a first layer of conductive material on the layer of dielectric material, and depositing a second layer of conductive material on the first layer of conductive material, the second layer being thinner in cross section than the first layer. A system for producing a curved rigid PCB including a housing, a build platform disposed in the housing, a mobile robotic depositor disposed upon the build platform, and a print head disposed in the housing and in printing proximity to the build platform, the head having a plurality of deposition nozzles and a laser.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Baker Hughes Oilfield Operations LLC
    Inventors: Navin Sakthivel, Aaron Avagliano, Dinesh Kommireddy, Marc Stephen Ramirez
  • Patent number: 11619760
    Abstract: A device for generating oscillating signals includes an energy transfer device configured to apply an oscillating signal to a sensitive volume, and a resonant tuning circuit including the energy transfer device. The tuning circuit includes a tuning capacitor configured to cause the tuning circuit to resonate at a selected frequency, and an energy storage device. The transmitting device also includes a controller configured to apply a pulse sequence to the tuning circuit having a series of pulses, the energy storage device configured to retain electrical energy at an end of a first pulse, and discharge the electrical energy to the tuning circuit at an onset of a next pulse of the pulse sequence.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 4, 2023
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Youssef Boulaknadal, Stanislav Forgang, Ryan Rocheleau, Marc Stephen Ramirez
  • Publication number: 20220413178
    Abstract: A device for generating oscillating signals includes an energy transfer device configured to apply an oscillating signal to a sensitive volume, and a resonant tuning circuit including the energy transfer device. The tuning circuit includes a tuning capacitor configured to cause the tuning circuit to resonate at a selected frequency, and an energy storage device. The transmitting device also includes a controller configured to apply a pulse sequence to the tuning circuit having a series of pulses, the energy storage device configured to retain electrical energy at an end of a first pulse, and discharge the electrical energy to the tuning circuit at an onset of a next pulse of the pulse sequence.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Applicant: Baker Hughes Oilfield Operations LLC
    Inventors: Stanislav Forgang, Ryan Rocheleau, Marc Stephen Ramirez, Youssef Boulaknadal
  • Patent number: 11460600
    Abstract: An apparatus for performing a nuclear magnetic resonance (NMR) measurement in a borehole penetrating a subsurface formation includes an NMR tool having an outside diameter that is less than an inside diameter of a drill tubular disposed in the borehole, the drill tubular having an opening at the distal end of the drill tubular leading into the borehole, and a retaining device configured to allow at least a section of the NMR tool to protrude through the opening of the drill tubular and prevent an unrestrained release of the NMR tool through the opening. The apparatus also includes a transmitter antenna and a receiver antenna coupled to the NMR tool, wherein the transmitter antenna and/or the receiver antenna are extendable from the NMR tool.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: October 4, 2022
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Carl M. Edwards, Marc Stephen Ramirez, Otto Fanini, Stanislav Forgang
  • Publication number: 20220075090
    Abstract: An apparatus for performing a nuclear magnetic resonance (NMR) measurement in a borehole penetrating a subsurface formation includes an NMR tool having an outside diameter that is less than an inside diameter of a drill tubular disposed in the borehole, the drill tubular having an opening at the distal end of the drill tubular leading into the borehole, and a retaining device configured to allow at least a section of the NMR tool to protrude through the opening of the drill tubular and prevent an unrestrained release of the NMR tool through the opening. The apparatus also includes a transmitter antenna and a receiver antenna coupled to the NMR tool, wherein the transmitter antenna and/or the receiver antenna are extendable from the NMR tool.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Applicant: Baker Hughes Oilfield Operations LLC
    Inventors: Carl M. Edwards, Marc Stephen Ramirez, Otto Fanini, Stanislav Forgang
  • Patent number: 11171684
    Abstract: An NMR measurement apparatus includes a transmitting antenna including a transmitter coil, a capacitor, a dissipating component and a restricting component, and a receiving antenna physically separated from the transmitting antenna. A processor is configured to apply a drive signal at a first voltage level to generate a transmission signal having a selected transmission frequency, where the receiving antenna is deactivated during generation, connect the dissipating component to the transmitter coil to dissipate stored energy in the transmitter coil, connect the restricting component to the transmitter coil to restrict the transmitting antenna to a second voltage level smaller than the first voltage level and based on a voltage of NMR signals from the sensitive volume, activate the receiving antenna and detect a NMR signal, where the restricting component is connected to the transmitter coil and restricts the transmitting antenna during the activating and the detecting.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 9, 2021
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Quming Zhou, Stanislav Forgang, Marc Stephen Ramirez
  • Patent number: 11143782
    Abstract: An apparatus for performing a downhole nuclear magnetic resonance (NMR) experiment on a subsurface material in a volume of interest includes: a carrier configured to be conveyed through a borehole penetrating the subsurface material; an NMR sensor assembly disposed on the carrier and comprising a static magnetic field source configured to polarize nuclei of the subsurface material in the volume of interest and an antenna configured to receive NMR signals; and a receiver circuit disposed on the NMR sensor assembly and configured to process received NMR signals to perform the downhole NMR experiment; wherein (i) the receiver circuit is disposed in a pressure-excluding enclosure and (ii) the antenna, the static magnetic field source, and the pressure-excluding enclosure are disposed in a pressure-balancing fluid that is at least partially enclosed by an enclosure of non-metallic material.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: October 12, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Quming Zhou, Marc Stephen Ramirez
  • Patent number: 10900916
    Abstract: A method for transforming an earth formation and/or a completion component for the earth formation based on estimating a parameter of the earth formation includes: performing a nuclear magnetic resonance (NMR) experiment on the earth formation, the NMR experiment includes transmitting an initial radio-frequency (RF) pulse and a series of refocusing RF pulses; detecting a truncated free induction decay (FID) signal following the initial RF pulse and a spin echo following at least one refocusing RF pulse, the truncated FID signal missing an initial part of a total FID signal; reconstructing the total FID signal using the truncated FID signal, the detected spin echo, and a calculated or measured time between end of transmitting the initial RF pulse and beginning of receiving the truncated FID signal; estimating the parameter using the total FID signal; and transforming the earth formation and/or the completion component based on the estimated property using transformation-equipment.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: January 26, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Marc Stephen Ramirez, Quming Zhou
  • Patent number: 10802176
    Abstract: A nuclear magnetic resonance apparatus includes a magnet assembly, a transmitting antenna configured to generate an oscillating magnetic field in a sensitive volume within an earth formation, and one or more receiving antennas configured to detect a nuclear magnetic resonance signal originating in the sensitive volume. The one or more receiving antennas are arranged relative so that the one or more receiving antennas are inductively decoupled from the transmitting antenna, a first portion of the surface area of the one or more receiving antennas overlapping a first region of the transmitting antenna in which a magnetic flux of the transmitting antenna is in a first direction, and a second portion of the surface area of the one or more receiver antennas overlapping a second region of the transmitting antenna in which the magnetic flux is in a second direction predominantly opposed to the first direction.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: October 13, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Marc Stephen Ramirez
  • Patent number: 10585205
    Abstract: An apparatus for performing a nuclear magnetic resonance (NMR) experiment in a borehole penetrating the earth includes: a carrier configured to be conveyed through the borehole; an antenna assembly disposed on the carrier and configured to receive an NMR signal; and an active gain circuit having an input coupled to the antenna and configured to apply gain to the received NMR signal and to provide an output signal comprising NMR experiment data. The apparatus also includes a feedback circuit configured to feed the output signal back to the input of the active gain circuit; wherein the signal fed back to the input of the active gain circuit is out of phase with the received NMR signal and the feedback circuit provides an electrical quality factor Q value of an antenna assembly that is less than the electrical quality factor Q value of the antenna assembly without the feedback circuit.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 10, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Marc Stephen Ramirez, Stanislav W. Forgang
  • Publication number: 20200018148
    Abstract: A method for transforming an earth formation and/or a completion component for the earth formation based on estimating a parameter of the earth formation includes: performing a nuclear magnetic resonance (NMR) experiment on the earth formation, the NMR experiment includes transmitting an initial radio-frequency (RF) pulse and a series of refocusing RF pulses; detecting a truncated free induction decay (FID) signal following the initial RF pulse and a spin echo following at least one refocusing RF pulse, the truncated FID signal missing an initial part of a total FID signal; reconstructing the total FID signal using the truncated FID signal, the detected spin echo, and a calculated or measured time between end of transmitting the initial RF pulse and beginning of receiving the truncated FID signal; estimating the parameter using the total FID signal; and transforming the earth formation and/or the completion component based on the estimated property using transformation-equipment.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Marc Stephen Ramirez, Quming Zhou
  • Publication number: 20190391292
    Abstract: An apparatus for performing a downhole nuclear magnetic resonance (NMR) experiment on a subsurface material in a volume of interest includes: a carrier configured to be conveyed through a borehole penetrating the subsurface material; an NMR sensor assembly disposed on the carrier and comprising a static magnetic field source configured to polarize nuclei of the subsurface material in the volume of interest and an antenna configured to receive NMR signals; and a receiver circuit disposed on the NMR sensor assembly and configured to process received NMR signals to perform the downhole NMR experiment; wherein (i) the receiver circuit is disposed in a pressure-excluding enclosure and (ii) the antenna, the static magnetic field source, and the pressure-excluding enclosure are disposed in a pressure-balancing fluid that is at least partially enclosed by an enclosure of non-metallic material.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 26, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Quming Zhou, Marc Stephen Ramirez
  • Publication number: 20190219726
    Abstract: An apparatus for performing a nuclear magnetic resonance (NMR) experiment in a borehole penetrating the earth includes: a carrier configured to be conveyed through the borehole; an antenna assembly disposed on the carrier and configured to receive an NMR signal; and an active gain circuit having an input coupled to the antenna and configured to apply gain to the received NMR signal and to provide an output signal comprising NMR experiment data. The apparatus also includes a feedback circuit configured to feed the output signal back to the input of the active gain circuit; wherein the signal fed back to the input of the active gain circuit is out of phase with the received NMR signal and the feedback circuit provides an electrical quality factor Q value of an antenna assembly that is less than the electrical quality factor Q value of the antenna assembly without the feedback circuit.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 18, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Marc Stephen Ramirez, Stanislav W. Forgang
  • Patent number: 10082594
    Abstract: Nuclear magnetic resonance apparatuses and methods for estimating properties of an earth formation are provided. An apparatus includes a carrier configured to be deployed in a borehole, at least one transmitting assembly configured to generate an oscillating magnetic field in a volume of interest within the earth formation, at least one receiving assembly configured to detect a nuclear magnetic resonance (NMR) signal originating in the volume of interest; and a magnet assembly configured to generate a static magnetic field in the formation from a primary side of the magnet assembly. The magnet assembly includes an array of longitudinally elongated magnets having a rotating pattern of magnetic orientations, the array configured to generate the static magnetic field in the volume of interest, and the static magnetic field strength is higher at the primary side than the field strength at a side of the magnet assembly that is opposite the primary side.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 25, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Marc Stephen Ramirez, Stanislav Wilhelm Forgang, Babak Kouchmeshky
  • Publication number: 20180231682
    Abstract: A nuclear magnetic resonance apparatus includes a magnet assembly, a transmitting antenna configured to generate an oscillating magnetic field in a sensitive volume within an earth formation, and one or more receiving antennas configured to detect a nuclear magnetic resonance signal originating in the sensitive volume. The one or more receiving antennas are arranged relative so that the one or more receiving antennas are inductively decoupled from the transmitting antenna, a first portion of the surface area of the one or more receiving antennas overlapping a first region of the transmitting antenna in which a magnetic flux of the transmitting antenna is in a first direction, and a second portion of the surface area of the one or more receiver antennas overlapping a second region of the transmitting antenna in which the magnetic flux is in a second direction predominantly opposed to the first direction.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Applicant: Baker Hughes Incorporated
    Inventor: Marc Stephen Ramirez
  • Publication number: 20160299249
    Abstract: Nuclear magnetic resonance apparatuses and methods for estimating properties of an earth formation are provided. An apparatus includes a carrier configured to be deployed in a borehole, at least one transmitting assembly configured to generate an oscillating magnetic field in a volume of interest within the earth formation, at least one receiving assembly configured to detect a nuclear magnetic resonance (NMR) signal originating in the volume of interest; and a magnet assembly configured to generate a static magnetic field in the formation from a primary side of the magnet assembly. The magnet assembly includes an array of longitudinally elongated magnets having a rotating pattern of magnetic orientations, the array configured to generate the static magnetic field in the volume of interest, and the static magnetic field strength is higher at the primary side than the field strength at a side of the magnet assembly that is opposite the primary side.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 13, 2016
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Marc Stephen Ramirez, Stanislav Wilhelm Forgang