Patents by Inventor Marcel Aeschlimann

Marcel Aeschlimann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200030115
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Patent number: 10470893
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 12, 2019
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Publication number: 20190330579
    Abstract: A cell culturing system includes a docking station, a handling unit, a culturing module and an actuation layer. The culturing module has a culturing well and a culturing membrane separating the culturing well in an apical culturing chamber and a basal culturing chamber. The handling unit removably accommodates the culturing module and the actuation layer. The docking station has a coupling structure for removably holding the handling unit in a predefined position and an actuation feeding channel, wherein, when the handling unit is held by the coupling structure in the predefined position, a first end of the actuation feeding channel is connected to the actuation bore and a second end of the actuation feeding channel is connected to a connector.
    Type: Application
    Filed: November 23, 2017
    Publication date: October 31, 2019
    Inventors: Olivier Thierry GUENAT, Janick Daniel STUCKI, Marcel AESCHLIMANN, Christophe LÉCHOT
  • Patent number: 10427359
    Abstract: A joining element has an anchoring portion for in-depth anchoring in the object and a head portion arranged proximally of the anchoring portion with respect to an insertion axis. The head portion has a lateral outer surface that has a structure that is well-defined, especially within tight tolerances. The joining element is positioned relative to an object of a non-liquefiable material such that the anchoring portion reaches into an opening of the object or is placed adjacent a mouth thereof. Then, the joining element is pressed towards a distal direction, to press the anchoring portion into the opening, while mechanical vibration energy is coupled into the joining element by a tool, in an amount and for a time sufficient for liquefaction of a portion of the thermoplastic material to cause interpenetration of the thermoplastic material into structures of the object.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: October 1, 2019
    Assignees: WOODWELDING AG, INTER IKEA SYSTEMS B.V.
    Inventors: Nihat Dizdar, Håkan Käll, Pontus Håkansson, Muthumariappan Sankaran, Mario Lehmann, Jörg Mayer, Laurent Torriani, Marcel Aeschlimann
  • Publication number: 20190282276
    Abstract: A tool for implementing a correction plan in an external fixation frame having a plurality of adjustment elements or screws, for example, generally includes a driver, a motor, a controller, and a processor. The driver is adapted to engage and rotate each of the screws. The motor is coupled the driver and adapted to rotate the driver. The controller is connected to the motor and configured to control operation of the motor. The a processor adapted configured to: receive correction plan data; receive identification data including information for identifying at least one of the plurality of screws; determine movement of at least one of the plurality of the screws based on the correction plan data and the identification data; and send signals indicative of the determined movement to the controller in order to rotate at least one of the plurality of screws according to a predetermined correction plan.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Inventors: Vinzenz Andreas Burgherr, Adam John Edelhauser, Yves Stephane Crozet, Marcel Aeschlimann, Christoph Dworzak, Antonino Lanci, Markus Mast
  • Patent number: 10406757
    Abstract: A first object is anchored in a second object. The first object has a material with thermoplastic properties, and the second material has a material that is solid and is penetrable by the first material when in a liquefied state. The second object has an insertion face with an opening having a mouth in the insertion face, and the first object has an insert portion that for anchoring is placed in the opening or about the mouth thereof. For anchoring, energy suitable for liquefaction of the first material impinges in an amount and for a time sufficient for at least partial liquefaction of the first material and interpenetration of the first and second materials. The second object, around the opening, has an anisotropic strength with respect to forces perpendicular to the opening axis.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: September 10, 2019
    Assignees: WOODWELDING AG, INTER IKEA SYSTEMS B.V.
    Inventors: Mario Lehmann, Jörg Mayer, Marcel Aeschlimann, Laurent Torriani, Muthumariappan Sankaran, Håkan Käll
  • Patent number: 10390957
    Abstract: A human or animal joint is treated by introduction of a device between the suitably prepared articulating surfaces of the joint, and the device is anchored in both these articular surfaces with a material having thermoplastic properties. For allowing at least limited articulation of the joint after implantation, the device includes two articulating portions, wherein one of the articulating portions is anchored in each articulating surfaces of the joint. On implantation a proximal face of the device is contacted with a vibrating tool and the vibration is transmitted through parts of the device to locations in which the material having thermoplastic properties is near the bone tissue of the articulating surfaces of the joint and in which liquefaction is desired. The liquefied material penetrates the bone tissue and, on re-solidification forms a positive fit connection between the device and the bone tissue.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: August 27, 2019
    Assignee: SPINEWELDING AG
    Inventors: Jörg Mayer, Marcel Aeschlimann, Mario Lehmann, Andreas Wenger, Stephanie Goebel-Mehl
  • Patent number: 10349981
    Abstract: A tool for implementing a correction plan in an external fixation frame having a plurality of adjustment elements or screws, for example, generally includes a driver, a motor, a controller, and a processor. The driver is adapted to engage and rotate each of the screws. The motor is coupled the driver and adapted to rotate the driver. The controller is connected to the motor and configured to control operation of the motor. The a processor adapted configured to: receive correction plan data; receive identification data including information for identifying at least one of the plurality of screws; determine movement of at least one of the plurality of the screws based on the correction plan data and the identification data; and send signals indicative of the determined movement to the controller in order to rotate at least one of the plurality of screws according to a predetermined correction plan.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 16, 2019
    Assignee: Stryker European Holdings I, LLC
    Inventors: Vinzenz Andreas Burgherr, Adam John Edelhauser, Yves Stephane Crozet, Marcel Aeschlimann, Christoph Dworzak, Antonino Lanci, Markus Mast
  • Patent number: 10336029
    Abstract: A method of fastening an edge structure to a construction element includes providing the construction element, being a planar structure with two cover regions and a middle region between the cover regions; providing the edge structure being continuously extended, the edge structure having contact surfaces with a thermoplastic material shaped to lie against the cover regions in an outer surface of the construction element, and, opposite the contact surfaces, a coupling-in surface for coupling energy into the edge structure; coupling energy into the edge structure and pressing the contact surfaces against the cover regions until at least a portion of the thermoplastic material is liquefied and pressed into the cover regions; and repeating or continuing the steps of coupling and pressing until the edge structure is attached to the building element at a plurality of discrete locations or over an extended region along an edge of the construction element.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 2, 2019
    Assignee: WOODWELDING AG
    Inventors: Laurent Torriani, Mario Lehmann, Marcel Aeschlimann
  • Publication number: 20190133777
    Abstract: A spine stabilization device having an interbody spacer shaped to be inserted between a vertebral body of an upper vertebra and a vertebral body of a lower vertebra. The device further includes a fixation device to be inserted after placement of the interbody spacer, the fixation device having a support portion securing the interbody spacer against escaping from between the vertebral bodies into a ventral direction. The support portion rests against a portion of an anterior surface of the interbody spacer, and includes an anchor. The anchor has an anchoring material portion that is inserted, in a liquid state, into cancellous bone tissue of at least one of the vertebral bodies of the upper and lower vertebra, to thereby infiltrate the cancellous bone tissue, and to harden thereafter so as to fix the support portion to the vertebral body.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Andrea Müller, Milica Berra, Marcel Aeschlimann, Mario Lehmann, Urs Weber, Jörg Mayer, Stephen Hochschuler, Hansen Yuan, Frank M. Phillips, Stephanie Mehl, Elmar Mock, Andreas Wenger, Philipp Seiler, Ulrich Berlemann
  • Patent number: 10195045
    Abstract: A spine stabilization device having an interbody spacer shaped to be inserted between a vertebral body of an upper vertebra and a vertebral body of a lower vertebra. The device further includes a fixation device to be inserted after placement of the interbody spacer, the fixation device having a support portion securing the interbody spacer against escaping from between the vertebral bodies into a ventral direction. The support portion rests against a portion of an anterior surface of the interbody spacer, and includes an anchor. The anchor has an anchoring material portion that is inserted, in a liquid state, into cancellous bone tissue of at least one of the vertebral bodies of the upper and lower vertebra, to thereby infiltrate the cancellous bone tissue, and to harden thereafter so as to fix the support portion to the vertebral body.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 5, 2019
    Assignee: SPINEWELDING AG
    Inventors: Andrea Müller, Milica Berra, Marcel Aeschlimann, Mario Lehmann, Urs Weber, Jörg Mayer, Stephen Hochschuler, Hansen Yuan, Frank M. Phillips, Stephanie Mehl, Elmar Mock, Andreas Wenger, Philipp Seiler, Ulrich Berlemann
  • Publication number: 20180370181
    Abstract: A method of fastening an edge structure to a construction element includes providing the construction element, being a planar structure with with two cover regions and a middle region between the cover regions; providing the edge structure being continuously extended, the edge structure having contact surfaces with a thermoplastic material shaped to lie against the cover regions in an outer surface of the construction element, and, opposite the contact surfaces, a coupling-in surface for coupling energy into the edge structure; coupling energy into the edge structure and pressing the contact surfaces against the cover regions until at least a portion of the thermoplastic material is liquefied and pressed into the cover regions; and repeating or continuing the steps of coupling and pressing until the edge structure is attached to the building element at a plurality of discrete locations or over an extended region along an edge of the construction element.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 27, 2018
    Inventors: Laurent Torriani, Mario Lehmann, Marcel Aeschlimann
  • Patent number: 10136880
    Abstract: An augmentation method is provided, wherein a thermoplastic augmentation element is subject to mechanical energy impact and mechanical pressure by a tool so that augmentation material of the augmentation element is liquefied and pressed into hard tissue to augment the hard tissue, wherein in at least one axial depth, the augmentation element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the augmentation element and in second regions is not in contact with the augmentation element.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 27, 2018
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Marcel Aeschlimann
  • Patent number: 10059076
    Abstract: A method of fastening an edge structure to a construction element includes providing the construction element, being a planar structure with with two cover regions and a middle region between the cover regions; providing the edge structure being continuously extended, the edge structure having contact surfaces with a thermoplastic material shaped to lie against the cover regions in an outer surface of the construction element, and, opposite the contact surfaces, a coupling-in surface for coupling energy into the edge structure; coupling energy into the edge structure and pressing the contact surfaces against the cover regions until at least a portion of the thermoplastic material is liquefied and pressed into the cover regions; and repeating or continuing the steps of coupling and pressing until the edge structure is attached to the building element at a plurality of discrete locations or over an extended region along an edge of the construction element.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 28, 2018
    Assignee: WOODWELDING AG
    Inventors: Laurent Torriani, Mario Lehmann, Marcel Aeschlimann
  • Patent number: 10022089
    Abstract: The invention relates to a device and a method for noninvasive measurement of parameters of a bodily tissue, the measuring device having a sensor unit and a sensor mat for detachable placement of the device on a body surface. The sensor unit (1) has a receptacle (6), the interior of which accommodates a sensor arrangement, wherein the receptacle (6) has a sensor surface (15) in the direction of the body surface. The sensor mat (8) has a cutout (11) for accommodating the sensor unit (1) and a contact surface (14), at least partially surrounding the sensor unit (1), for placement on the body surface (9). A cover (12) is provided for closing the cutout (11) over an upper side of the sensor unit (1) and the sensor mat (8) during a measurement of parameters. The sensor unit (1), the sensor mat (8) and the cover (12) are detachable from one another.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 17, 2018
    Assignee: Luciole Medical AG
    Inventors: Christophe Lechot, Jean-Claude Frely, Marcel Aeschlimann, Juerg Hans Froehlich, Dirk Baumann, Markus Hugo Muser, Michael Oberle
  • Publication number: 20180153474
    Abstract: An EEG headpiece includes an array of electrode pins, each electrode pin extending between a proximal end, formed by a proximal end face, and a distal end and including a conducting electrode and a thermoplastic material. The thermoplastic material is arranged at least around a periphery of the electrode pin or is pressable from a hollow space to the periphery. Each electrode pin is equipped for the transmission of energy, especially mechanical vibration energy, from the proximal end face to the thermoplastic material to liquefy at least portions of the thermoplastic material from a solid state to a flowable state, whereby the thermoplastic material is capable of flowing into structures of a tissue portion surrounding the periphery and of forming, after re-solidification of the thermoplastic material, an anchoring of the electrode pin in the tissue portion.
    Type: Application
    Filed: October 2, 2015
    Publication date: June 7, 2018
    Inventors: Marcel Aeschlimann, Jörg Mayer, Mario Weiss, Aymeric Niederhauser
  • Patent number: 9962883
    Abstract: A reinforcement and/or lining method is provided, wherein a thermoplastic reinforcement and/or lining element is subject to mechanical energy impact and mechanical pressure by a tool so that reinforcement and/or lining material of the reinforcement and/or lining element is liquefied and pressed into porous material to reinforce the porous material. In at least one axial depth, the reinforcement and/or lining element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the reinforcement and/or lining element and in second regions is not in contact with the reinforcement and/or lining element.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: May 8, 2018
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Marcel Aeschlimann
  • Patent number: 9931165
    Abstract: A light diffuser, which is particularly suitable for introducing diffuse light into a tissue, is produced by interpenetration of a diffuser material in a liquid state into a boundary layer of a porous shaping material, by which process a diffuser surface is formed having a surface structure which represents essentially a negative of the pore structure of the shaping material and includes undercut structures induced by a surface tension. The light diffuser is e.g. produced by introducing a diffuser blank including material that is liquefiable through mechanical vibration into the shaping material and simultaneously stimulating it with mechanical vibrations, such that the liquefiable material liquefies at least there where it is in contact with the shaping material and is pressed into the shaping material. An in situ production of the diffuser is particularly advantageous for photodynamic therapy in bone tissue.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: April 3, 2018
    Assignee: WOODWELDING AG
    Inventors: Jorg Mayer, Marcel Aeschlimann, Laurent Torriani, Heinrich Walt
  • Patent number: 9924988
    Abstract: A method for locating a material having thermoplastic properties in pores of bone tissue includes providing a pin having the material having thermoplastic properties and a core, wherein the material having thermoplastic properties is arranged on the circumferential surface of the core constituting an outer region of the pin. An opening is provided in the bone tissue, and the pin is positioned at least partly in the opening. The outer region of the pin is then impinged with mechanical vibration energy for a time sufficient for liquefying at least part of the material having thermoplastic properties, and, in a liquefied state, pressing it into the pores of the bone tissue surrounding the opening. The vibration energy is stopped for a time sufficient for re-solidification of the liquefied material, and then the core is removed.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: March 27, 2018
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Antonino Lanci, Jörg Mayer
  • Publication number: 20180035989
    Abstract: An augmentation method is provided, wherein a thermoplastic augmentation element is subject to mechanical energy impact and mechanical pressure by a tool so that augmentation material of the augmentation element is liquefied and pressed into hard tissue to augment the hard tissue, wherein in at least one axial depth, the augmentation element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the augmentation element and in second regions is not in contact with the augmentation element.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: Jörg Mayer, Marcel Aeschlimann