Patents by Inventor Marcel Franz

Marcel Franz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8378287
    Abstract: The invention relates to an optical sensor module (1) for a measuring device. Said module comprises at least one optical sensor (2) including a diode laser (3) having a laser cavity for generating a measuring beam, the diode laser being attached to a substrate (12), converging means (5) (such as a lens). During measuring, such converging means (5) converges the measuring beam in an action plane and converges in the laser cavity the measuring beam radiation that has been back-scattered by an object to generate a self-mixing effect and means for measuring the self-mixing effect. Later means comprise a photo diode (4) and an associated signal processing circuitry. According to an essential aspect of the invention, that the diode laser (3) is configured to emit laser radiation of a wavelength for which the substrate (12) being attached to the diode laser (3) is transparent. This configuration leads to an essentially simple (and therefore cheap) sensor module.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Marcel Franz Christian Schemmann, Armand Pruijmboom, Silvia Maria Booij, Klaus Peter Werner
  • Patent number: 8064777
    Abstract: A system includes a laser generator, and a signal distortion generator circuit inline with the laser generator modulation signal and configured to generate distortion vectors in any of four distortion vector quadrants.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 22, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Venkatesh Gururaj Mutalik, Marcel Franz Christian Schemmann, Long Zou
  • Publication number: 20110116101
    Abstract: A laser self-mixing measuring device is provided, comprising a laser with a laser cavity and a surface arranged along the optical path of the laser beam which redirects incident laser light back into the laser cavity. The surface comprises a periodic structure which diffracts the laser light into partial beams.
    Type: Application
    Filed: June 30, 2008
    Publication date: May 19, 2011
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Klaus Peter Werner, Carsten Heinks, Marcel Franz Christian Schemmann
  • Publication number: 20110064110
    Abstract: The present invention relates to a vertical cavity surface emitting laser device comprising a VCSEL with a monolithically integrated photodiode. The photodiode (2) is formed of a layer sequence of a first n-doped region (6), a p-doped region (7), an intrinsic region (8) and a second n-doped region (9) of a semiconductor material. The photodiode (2) and the laser share a common electrode, which is realized as an Ohmic n-contact (10) at said first n-doped region (6). The proposed device allows less complex manufacturing, resulting in lower manufacturing costs.
    Type: Application
    Filed: May 4, 2009
    Publication date: March 17, 2011
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Philipp Henning Gerlach, Roger King, Marcel Franz Christian Schemmann
  • Publication number: 20100254423
    Abstract: The present invention relates to a semiconductor laser for use in an optical module for measuring distances and/or movements, using the self-mixing effect. The semiconductor laser comprises a layer structure including an active region (3) embedded between two layer sequences (1, 2) and further comprises a photodetector arranged to measure an intensity of an optical field resonating in said laser. The photodetector is a phototransistor composed of an emitter layer (e), a collector layer (c) and a base layer (b), each of which being a bulk layer and forming part of one of said layer sequences (1, 2). With the proposed semiconductor laser an optical module based on this laser can be manufactured more easily, at lower costs and in a smaller size than known modules.
    Type: Application
    Filed: December 9, 2008
    Publication date: October 7, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Marcel Franz Christian Schemmann
  • Patent number: 7809264
    Abstract: A diagnostic and prescriptive system and method for management of a combined optical and RF cable plant system. In an exemplary embodiment the method and system uses optical receivers in a hub or headend to determine a variety of cable plant parameters such as the OMI of the received signal and automatically facilitated prescriptive service through prioritization and automatic recalibration. In another exemplary embodiment the method allows doing such signal OMI measurements in a closed loop system (that is a fully operational system). In addition, a further exemplary method and system allows storing of standard receiver calibration information such that from thereon signal OMI measurements that can be performed without signal interruption.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: October 5, 2010
    Assignee: Arris Group, Inc.
    Inventors: Marcel Franz Christian Schemmann, Venkatesh Gururaj Mutalik, Roy Allen Harbert, William John Zenkus
  • Publication number: 20100187449
    Abstract: The invention relates to an optical sensor module (1) for a measuring device. Said module comprises at least one optical sensor (2) including a diode laser (3) having a laser cavity for generating a measuring beam, the diode laser being attached to a substrate (12), converging means (5) (such as a lens). During measuring, such converging means (5) converges the measuring beam in an action plane and converges in the laser cavity the measuring beam radiation that has been back-scattered by an object to generate a self-mixing effect and means for measuring the self-mixing effect. Later means comprise a photo diode (4) and an associated signal processing circuitry. According to an essential aspect of the invention, that the diode laser (3) is configured to emit laser radiation of a wavelength for which the substrate (12) being attached to the diode laser (3) is transparent. This configuration leads to an essentially simple (and therefore cheap) sensor module.
    Type: Application
    Filed: June 23, 2008
    Publication date: July 29, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marcel Franz Christian Schemmann, Armand Pruijmboom, Silvia Maria Booij, Klaus Peter Werner
  • Publication number: 20100098119
    Abstract: A controller (7) is disclosed for controlling the power supply to a laser (3) that is used in determining the motion of an object (8). The controller comprises a power source (2) that is arranged to supply power pulses (10, 11) to the laser (3) in response to a controller signal. The controller (7) controls the generation of pulses to those periods in which a reliable result can be obtained, by detecting the laser radiation that has interacted with pulses reflected from the object (8), in order to conserve power consumption. Further the power pulses (10, 11) comprise a heating component (9), which serves to stabilize the temperature of the laser (3) and therefore calibrate the laser (3) so that a known lasing wavelength is generated.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 22, 2010
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Marcel Franz Christian Schemmann, Aalbert Stek, Carsten Heinks, Pieter Hoeven
  • Patent number: 6939059
    Abstract: Method and system for an optical package are disclosed. In one embodiment of the present invention, an optical package comprises: a lead frame; a substrate mounted inside the lead frame; one or more leads attached to the substrate; an optical device or component such as a LOA chip mounted on top of the substrate; a window cap hermetically sealing the optical device or component; one or more lens attached to either side of the window cap; two fibers attached on either side of the window cap; two holes or vias that may serve as inputs into the window cap or outputs from the window cap; an electrical out extending from the window cap; and an electrically isolated enclosure enveloping all contents inside the lead frame.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: September 6, 2005
    Assignee: Finisar Corporation
    Inventors: Jan Mink, Remigius Subertus Maria van Roemburg, Marcel Franz Christian Schemmann
  • Patent number: 6537847
    Abstract: A method is described for forming a solid state qubit. The method includes forming a dot or an anti-dot. The dot or anti-dot can be formed on a substrate and is delimited by an interface that defines a closed area. The dot or anti-dot includes a superconductive material with Cooper pairs that are in a state of non-zero orbital angular momentum on at least one side of the interface. The method includes removing superconducting material on the inner side of the interface or removing the outer side of the interface by etching. The method can further include forming a dot or an anti-dot by damaging the superconducting material such that the superconductive material becomes non-superconductive in predefined areas. The damaging of superconducting material can be performed by irradiation with particles, such as alpha particles or neutrons. The superconductive material can also be formed by doping a non-superconductive material.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: March 25, 2003
    Assignee: D-Wave Systems, Inc.
    Inventors: Alexandre M. Zagoskin, Geordie Rose, Mohammad H. S. Amin, Marcel Franz, Jeremy P. Hilton
  • Patent number: 6504172
    Abstract: A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: January 7, 2003
    Assignee: D-Wave Systems, Inc.
    Inventors: Alexandre M. Zagoskin, Geordie Rose, Mohammad H. S. Amin, Marcel Franz, Jeremy P. Hilton
  • Publication number: 20020180006
    Abstract: A ferroelectric is used to switch a superconductor computer element. Part of the superconductor element can be a high temperature superconductor layer, doped to the vicinity of a superconductor insulator transition. The ferroelectric overlies the superconductor layer, forming a heterostructure. A voltage can be applied to polarize the ferroelectric. This polarization in turn generates an electric field for the superconductor layer, effectively changing its doping. For sufficiently large voltages the superconductor transitions into an insulating state. When included into a sensor, this heterostructure can function as a switch, used in relation to reading the state of qubits. When coupling two qubits, this heterostructure can be used to control the entanglement of the two qubits.
    Type: Application
    Filed: May 31, 2001
    Publication date: December 5, 2002
    Inventors: Marcel Franz, Geordie Rose, Jeremy Hilton
  • Publication number: 20020130313
    Abstract: A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing.
    Type: Application
    Filed: January 25, 2002
    Publication date: September 19, 2002
    Inventors: Alexandre M. Zagoskin, Geordie Rose, Mohammad H.S. Amin, Marcel Franz, Jeremy P. Hilton
  • Publication number: 20020130315
    Abstract: A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing.
    Type: Application
    Filed: March 16, 2001
    Publication date: September 19, 2002
    Inventors: Alexandre M. Zagoskin, Geordie Rose, Mohammad H.S. Amin, Marcel Franz, Jeremy P. Hilton