Patents by Inventor Marcel Johannes Janssen

Marcel Johannes Janssen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7495142
    Abstract: Metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles are protecting from degradation by water by maintaining said molecular sieves or catalysts in contact with a liquid mixture of alcohol and water, the mixture of alcohol and water containing from 45 wt % to 99.8 wt % alcohol. The metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles which have been protected in such fashion catalyze the conversion of feedstocks to hydrocarbons.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: February 24, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel Johannes Janssen, Luc Roger Marc Martens
  • Patent number: 7309806
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 7288689
    Abstract: The present invention provides various processes for producing C1 to C4 alcohols, optionally in a mixed alcohol stream, and optionally converting the alcohols to light olefins. In one embodiment, the invention includes directing a first portion of a syngas stream to a methanol synthesis zone wherein methanol is synthesized. A second portion of the syngas stream is directed to a fuel alcohol synthesis zone wherein fuel alcohol is synthesized. The methanol and at least a portion of the fuel alcohol are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel Johannes Janssen, Cornelis F. Van Egmond, Luc R. M. Martens, Jaimes Sher
  • Patent number: 7276149
    Abstract: The invention is directed to methods of shutting down reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of stopping feed to the reactor and unloading catalyst to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: October 2, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Stephen Neil Vaughn
  • Patent number: 7264789
    Abstract: A colloidal suspension of LEV structure type crystalline molecular sieve, making the suspension by washing smaller crystallites from a previously found solid LEV product, and using the suspension as seeds in further crystalline molecular sieve syntheses.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: September 4, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje Van Den Berge, legal representative, Machteld Maria Wilfried Mertens, Marcel Johannes Janssen, Cornelius Wilhelmus Maria Van Oorschot, David E. W. Vaughan, Johannes Petrus Verduijn, deceased
  • Patent number: 7259287
    Abstract: The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 21, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem, Stephen Neil Vaughn
  • Patent number: 7241716
    Abstract: Metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles are protecting from degradation by water by maintaining said molecular sieves or catalysts in contact with a liquid mixture of alcohol and water, the mixture of alcohol and water containing from 45 wt % to 99.8 wt % alcohol. The metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles which have been protected in such fashion catalyze the conversion of feedstocks to hydrocarbons.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: July 10, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel Johannes Janssen, Luc Roger Marc Martens
  • Patent number: 7196239
    Abstract: The present invention provides various processes for producing light olefins from methanol and ethanol, optionally in a mixed alcohol stream. In one embodiment, the invention includes directing a first syngas stream to a methanol synthesis zone to form methanol and directing a second syngas stream and methanol to a homologation zone to form ethanol. The methanol and ethanol are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cornelis F. Van Egmond, Andrew Argo, Teng Xu, Marcel Johannes Janssen, Jaimes Sher
  • Patent number: 7193122
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with chemisorbed ammonia, which may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Marcel Johannes Janssen, Luc R. M. Martens
  • Patent number: 7015174
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 21, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 6974889
    Abstract: Colloidal crystalline molecular sieve seeds are used in phosphorus-containing crystalline molecular sieve manufacture. Certain of the products have enhanced utility in oxygenate conversions.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 13, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, legal representative, Machteld Maria Wilfried Mertens, Wilfried Jozef Mortier, Marcel Johannes Janssen, Cornelius Maria Wilhelmus Van Oorschot, Johannes Petrus Verduijn, deceased
  • Patent number: 6936566
    Abstract: The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 30, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Kun Wang, Richard B. Hall, Marcel Johannes Janssen, Luc Roger Marc Martens, An Verberckmoes, Guang Cao
  • Patent number: 6906233
    Abstract: The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: June 14, 2005
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Kun Wang, Richard B. Hall, Marcel Johannes Janssen, Luc Roger Marc Martens, An Amandine Verberckmoes, Guang Cao
  • Patent number: 6897180
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with chemisorbed ammonia, which may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 24, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Marcel Johannes Janssen, Luc R. M. Martens
  • Patent number: 6897179
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 24, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Publication number: 20040260140
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Publication number: 20040254068
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Patent number: 6821503
    Abstract: Crystalline molecular sieve particles of a size suitable for use as seeds in molecular sieve manufacture are obtained by washing larger particle sized product to dislodge smaller particles from the larger.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 23, 2004
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Johannes Petrus Verduijn, Machteld Maria Wilfried Mertens, Wilfried Jozef Mortier, Marcel Johannes Janssen, Cornelis Wilhelmus Maria Van Oorschot, David E. W. Vaughan
  • Publication number: 20040116762
    Abstract: The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
    Type: Application
    Filed: March 24, 2003
    Publication date: June 17, 2004
    Inventors: Filip Mees, Etienne Vansant, Kun Wang, Richard B. Hall, Marcel Johannes Janssen, Luc Roger Marc Martens, An Verberckmoes, Guang Cao
  • Publication number: 20040116282
    Abstract: The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
    Type: Application
    Filed: December 12, 2002
    Publication date: June 17, 2004
    Inventors: Filip Mees, Etienne Vansant, Kun Wang, Richard B. Hall, Marcel Johannes Janssen, Luc Roger Marc Martens, An Amandine Verberckmoes, Guang Cao