Patents by Inventor Marcelo A. Kuroda

Marcelo A. Kuroda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220146451
    Abstract: In at least one illustrative embodiment, a field-effect transistor biosensor for detection of a pathogen includes a substrate and a channel formed from a two-dimensional monolayer or few-layer metal chalcogenide that is functionalized with a biorecognition element. The biorecognition element may be an antibody, such as an antibody for the SARS-CoV-2 spike protein. A method for manufacturing the biosensor includes depositing an amorphous two-dimensional material on the substrate with pulsed laser ablation, crystallizing the amorphous two-dimensional material to generate a two-dimensional monolayer coupled to the substrate, and activating a surface of the two-dimensional material with the biorecognition element after crystallizing the amorphous two-dimensional material. The composition of the two-dimensional material may be tuned. The substrate may be photolithographically patterned. Other embodiments are described and claimed.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: MASOUD MAHJOURI-SAMANI, MICHAEL C. HAMILTON, MARCELO KURODA, SAHAR HASIM, PARVIN FATHI-HAFSHEJANI
  • Patent number: 10964881
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Patent number: 9941472
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Publication number: 20180090681
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Patent number: 9444029
    Abstract: A method of forming a piezoelectronic transistor (PET), the PET, and a semiconductor device including the PET are described. The method includes forming a piezoelectric (PE) element with a trench and forming a pair of electrodes on the PE element in a coplanar arrangement in a first plane, both of the pair of electrodes being on a same side of the PE element. The method also includes forming a piezoresistive (PR) element above the pair of electrodes and forming a clamp above the PR element. Applying a voltage to the pair of electrodes causes displacement of the PE element perpendicular to the first plane.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: September 13, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian A. Bryce, Josephine B. Chang, Marcelo A. Kuroda
  • Patent number: 9419203
    Abstract: A method of forming a piezoelectronic transistor (PET) device, the PET device, and a semiconductor including the PET device are described. The method includes forming a first metal layer, forming a layer of a piezoelectric (PE) element on the first metal layer, and forming a second metal layer on the PE element. The method also includes forming a well above the second metal layer, forming a piezoresistive (PR) material in the well and above the well, and forming a passivation layer and a top metal layer above the PR material at the diameter of the PR material above the well, wherein a cross sectional shape of the well, the PR material above the well, the passivation layer, and the top metal layer is a T-shaped structure. The method further includes forming a metal clamp layer as a top layer of the PET device.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 16, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Patent number: 9419201
    Abstract: A semiconductor device, a piezoelectronic transistor (PET) device, and a method of fabricating the PET device are described. The method includes forming a first stack of dielectric layers, forming a first metal layer over the first stack, forming a piezoelectric (PE) material on the first metal layer, and forming a second metal layer on the PE material. The method also includes forming a piezoresistive (PR) element on the second metal layer through a gap in a first membrane formed a distance d above the second metal layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 16, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Publication number: 20160126448
    Abstract: A semiconductor device, a piezoelectronic transistor (PET) device, and a method of fabricating the PET device are described. The method includes forming a first stack of dielectric layers, forming a first metal layer over the first stack, forming a piezoelectric (PE) material on the first metal layer, and forming a second metal layer on the PE material. The method also includes forming a piezoresistive (PR) element on the second metal layer through a gap in a first membrane formed a distance d above the second metal layer.
    Type: Application
    Filed: June 23, 2015
    Publication date: May 5, 2016
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Publication number: 20160126446
    Abstract: A method of forming a piezoelectronic transistor (PET) device, the PET device, and a semiconductor including the PET device are described. The method includes forming a first metal layer, forming a layer of a piezoelectric (PE) element on the first metal layer, and forming a second metal layer on the PE element. The method also includes forming a well above the second metal layer, forming a piezoresistive (PR) material in the well and above the well, and forming a passivation layer and a top metal layer above the PR material at the diameter of the PR material above the well, wherein a cross sectional shape of the well, the PR material above the well, the passivation layer, and the top metal layer is a T-shaped structure. The method further includes forming a metal clamp layer as a top layer of the PET device.
    Type: Application
    Filed: June 23, 2015
    Publication date: May 5, 2016
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Publication number: 20160126447
    Abstract: A method of forming a piezoelectronic transistor (PET), the PET, and a semiconductor device including the PET are described. The method includes forming a piezoelectric (PE) element with a trench and forming a pair of electrodes on the PE element in a coplanar arrangement in a first plane, both of the pair of electrodes being on a same side of the PE element. The method also includes forming a piezoresistive (PR) element above the pair of electrodes and forming a clamp above the PR element. Applying a voltage to the pair of electrodes causes displacement of the PE element perpendicular to the first plane.
    Type: Application
    Filed: June 23, 2015
    Publication date: May 5, 2016
    Inventors: Brian A. Bryce, Josephine B. Chang, Marcelo A. Kuroda
  • Patent number: 9293687
    Abstract: A method of forming a piezoelectronic transistor (PET) device, the PET device, and a semiconductor including the PET device are described. The method includes forming a first metal layer, forming a layer of a piezoelectric (PE) element on the first metal layer, and forming a second metal layer on the PE element. The method also includes forming a well above the second metal layer, forming a piezoresistive (PR) material in the well and above the well, and forming a passivation layer and a top metal layer above the PR material at the diameter of the PR material above the well, wherein a cross sectional shape of the well, the PR material above the well, the passivation layer, and the top metal layer is a T-shaped structure. The method further includes forming a metal clamp layer as a top layer of the PET device.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 22, 2016
    Assignee: International Business Machines Corporation
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Patent number: 9287489
    Abstract: A method of forming a piezoelectronic transistor (PET), the PET, and a semiconductor device including the PET are described. The method includes forming a piezoelectric (PE) element with a trench and forming a pair of electrodes on the PE element in a coplanar arrangement in a first plane, both of the pair of electrodes being on a same side of the PE element. The method also includes forming a piezoresistive (PR) element above the pair of electrodes and forming a clamp above the PR element. Applying a voltage to the pair of electrodes causes displacement of the PE element perpendicular to the first plane.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Brian A. Bryce, Josephine B. Chang, Marcelo A. Kuroda
  • Patent number: 9263664
    Abstract: A semiconductor device, a piezoelectronic transistor (PET) device, and a method of fabricating the PET device are described. The method includes forming a first stack of dielectric layers, forming a first metal layer over the first stack, forming a piezoelectric (PE) material on the first metal layer, and forming a second metal layer on the PE material. The method also includes forming a piezoresistive (PR) element on the second metal layer through a gap in a first membrane formed a distance d above the second metal layer.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Brian A. Bryce, Josephine B. Chang, Matthew W. Copel, Marcelo A. Kuroda
  • Publication number: 20150255699
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Application
    Filed: December 19, 2014
    Publication date: September 10, 2015
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Publication number: 20120000521
    Abstract: A solar cell includes a semiconductor portion, a graphene layer disposed on a first surface of the semiconductor portion, and a first conductive layer patterned on the graphene layer, the first conductive layer including at least one bus bar portion, a plurality of fingers extending from the at least one bus bar portion, and a refractive layer disposed on the first conductive layer.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Applicants: EGYPT NANOTECHNOLOGY CENTER, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ageeth A. Bol, Amal Kasry, Marcelo Kuroda, Ahmed Maarouf, Glenn J. Martyna, Dennis M. Newns, Razvan A. Nistor, George S. Tulevski