Patents by Inventor Marcelo Lamego

Marcelo Lamego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342072
    Abstract: The present disclosure provides a physiological monitoring system that includes at least one physiological sensor indicative of a physiological condition of a patient, the at least one sensor worn by a patient. Sensors can include one or more optical sensors configured to measure a physiological parameter, such as total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, and the like. A monitoring system can receive measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can generate an alert.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: May 24, 2022
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 11331042
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 17, 2022
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Patent number: 11272852
    Abstract: A method of determining blood pressure measurements includes inflating a cuff, receiving an indication of pressure inside the cuff during inflation, determining a blood pressure based at least in part on the received indication, assigning a confidence level to the blood pressure, and determining whether the confidence level satisfies a threshold confidence level. Based at least on a determination that the confidence level satisfies a threshold confidence level, the method can include causing a display to display the blood pressure. Based at least on a determination that the confidence level does not satisfy a threshold confidence level, the method can include deflating the cuff, receiving an indication of pressure inside the cuff during deflation, determining another blood pressure, and causing a display to display a blood pressure.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: March 15, 2022
    Assignee: Masimo Corporation
    Inventors: Marcelo Lamego, Massi Joe E Kiani, Ken Lam, Cristiano Dalvi, Hung The Vo
  • Publication number: 20220005599
    Abstract: The present disclosure provides a physiological monitoring system that includes at least one physiological sensor indicative of a physiological condition of a patient, the at least one sensor worn by a patient. Sensors can include one or more optical sensors configured to measure a physiological parameter, such as total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, and the like. A monitoring system can receive measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can generate an alert.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 6, 2022
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Publication number: 20210378517
    Abstract: A modulated physiological sensor is a noninvasive device responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a skin surface area. The modulated physiological sensor has a detector configured to generate a signal responsive to the physiological reaction. A modulator varies the coupling of the detector to the skin so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives an effectively amplified detector signal, which is processed to calculate a physiological parameter indicative of the physiological reaction.
    Type: Application
    Filed: March 22, 2021
    Publication date: December 9, 2021
    Inventors: Marcelo Lamego, Cristiano Dalvi, Hung The Vo
  • Publication number: 20210378555
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210378557
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210378556
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210335463
    Abstract: The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module.
    Type: Application
    Filed: July 6, 2021
    Publication date: October 28, 2021
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 11114188
    Abstract: The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 7, 2021
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 10952614
    Abstract: A modulated physiological sensor is a noninvasive device responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a skin surface area. The modulated physiological sensor has a detector configured to generate a signal responsive to the physiological reaction. A modulator varies the coupling of the detector to the skin so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives an effectively amplified detector signal, which is processed to calculate a physiological parameter indicative of the physiological reaction.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: March 23, 2021
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo Lamego, Cristiano Dalvi, Hung The Vo
  • Patent number: 10945648
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 16, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912502
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912500
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912501
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210007635
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210007636
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210000392
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10758166
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 1, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10743803
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 18, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen