Patents by Inventor Marcelo M. Lamego

Marcelo M. Lamego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10855023
    Abstract: A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 1, 2020
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Marcelo M. Lamego, Cristiano Dalvi, Hung Vo
  • Publication number: 20200305777
    Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.
    Type: Application
    Filed: February 28, 2020
    Publication date: October 1, 2020
    Inventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
  • Patent number: 10772542
    Abstract: A method and an apparatus for separating a composite signal into a plurality of signals is described. A signal processor receives a composite signal and separates a composite signal into separate output signals. Feedback from one or more of the output signals is provided to a configuration module that configures the signal processor to improve a quality of the output signals. In one embodiment, calibration data from multiple calibration data sets is used to configure the demodulation of the composite signal into separate output signals.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 15, 2020
    Assignee: Masimo Corporation
    Inventors: Walter M. Weber, Ammar Al-Ali, Mohamed K. Diab, Marcelo M. Lamego
  • Publication number: 20200275889
    Abstract: A monitoring device for measuring one or more physiological parameters of a medical patient can include a finger clip sensor connected to a monitor. A placement indicator helps the patient to properly position the sensor. The monitor can display a message alerting the patient to reposition the sensor. The device can delay measurement until the sensor is properly positioned.
    Type: Application
    Filed: February 3, 2020
    Publication date: September 3, 2020
    Inventors: Jeroen Poeze, Marcelo M. Lamego
  • Patent number: 10729335
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 4, 2020
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Patent number: 10610139
    Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 7, 2020
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
  • Publication number: 20200100684
    Abstract: An electronic device includes a camera, an ambient light sensor, and a proximity sensor. The electronic device uses one or more of the camera and the proximity sensor to emit light into a body part of a user touching a surface of the electronic device and one or more of the camera, the ambient light sensor, and the proximity sensor to receive at least part of the emitted light reflected by the body part of the user. The electronic device computes health data of the user based upon sensor data regarding the received light. In some implementations, the electronic device may also include one or more electrical contacts that contact one or more body parts of the user. In such implementations, the health data may be further computed based on an electrical measurement obtained using the electrical contacts.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Inventor: Marcelo M. Lamego
  • Patent number: 10575779
    Abstract: A monitoring device for measuring one or more physiological parameters of a medical patient can include a finger clip sensor connected to a monitor. A placement indicator helps the patient to properly position the sensor. The monitor can display a message alerting the patient to reposition the sensor. The device can delay measurement until the sensor is properly positioned.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: March 3, 2020
    Assignee: MASIMO CORPORATION
    Inventors: Jeroen Poeze, Marcelo M. Lamego
  • Patent number: 10555678
    Abstract: A blood pressure measurement system is provided that includes an inflatable cuff, a valve assembly and chamber assembly. The chamber assembly can house a gas canister for providing gas to the inflatable cuff. The valve assembly can include a valve having a high pressure cavity, a low pressure cavity, and a channel providing a gas pathway between the high pressure cavity and the low pressure cavity. The valve assembly can further include a channel cover and spring in the high pressure cavity. The spring can exert a force on the channel cover to create a seal between the high pressure cavity and the channel. The valve assembly can further include a rod extending through the channel and exerting a force on the channel cover to create a gas pathway between the high pressure cavity and the channel.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 11, 2020
    Assignee: Masimo Corporation
    Inventors: Cristiano Dalvi, Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Hung Vo
  • Patent number: 10524671
    Abstract: An electronic device includes a camera, an ambient light sensor, and a proximity sensor. The electronic device uses one or more of the camera and the proximity sensor to emit light into a body part of a user touching a surface of the electronic device and one or more of the camera, the ambient light sensor, and the proximity sensor to receive at least part of the emitted light reflected by the body part of the user. The electronic device computes health data of the user based upon sensor data regarding the received light. In some implementations, the electronic device may also include one or more electrical contacts that contact one or more body parts of the user. In such implementations, the health data may be further computed based on the an electrical measurement obtained using the electrical contacts.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: January 7, 2020
    Assignee: Apple Inc.
    Inventor: Marcelo M. Lamego
  • Publication number: 20200000338
    Abstract: A cloud-based physiological monitoring system has a sensor in communications with a living being so as to generate a data stream generally responsive to a physiological condition of the living being. A monitor receives the data stream from the sensor and transmits the data stream to a cloud server. The cloud server processes the data stream so as to derive physiological parameters having values responsive to the physiological condition. The cloud server derives a medical index based upon a combination of the physiological parameters. The cloud server communicates the medical index to the monitor, which displays the medical index.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Marcelo M. Lamego, Abraham Mazda Kiani, Don Sanders, Jeroen Poeze, Massi Joe E Kiani, Anthony Amir Davia
  • Publication number: 20190386908
    Abstract: A physiological test credit method determines if test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server. In various embodiments, the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.
    Type: Application
    Filed: April 12, 2019
    Publication date: December 19, 2019
    Inventors: Marcelo M. Lamego, Jeroen Poeze
  • Publication number: 20190350498
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: June 11, 2019
    Publication date: November 21, 2019
    Inventors: Robert A. Smith, David Dalke, Ammar Al-Ali, Mohamed K. Diab, Marcelo M. Lamego
  • Patent number: 10456038
    Abstract: A cloud-based physiological monitoring system has a sensor in communications with a living being so as to generate a data stream generally responsive to a physiological condition of the living being. A monitor receives the data stream from the sensor and transmits the data stream to a cloud server. The cloud server processes the data stream so as to derive physiological parameters having values responsive to the physiological condition. The cloud server derives a medical index based upon a combination of the physiological parameters. The cloud server communicates the medical index to the monitor, which displays the medical index.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: October 29, 2019
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Abraham Mazda Kiani, Don Sanders, Jeroen Poeze, Massi Joe E. Kiani, Anthony Amir Davia
  • Publication number: 20190290136
    Abstract: A system for measuring blood pressure of a wearer of an inflatable cuff and a method thereof. The system includes a piston, a bar lever located to restrict at least some movement of the piston, a motor coupled to an actuator that is coupled to the bar lever, and a processor in communication with the motor. The processor is configured to receive pressure data associated with the inflatable cuff and is configured to, based on a determination that the pressure data satisfies a threshold, actuate the motor to move the bar lever in a first or second direction. Movement of the bar lever in the first direction causes the piston to move in the first direction, thereby increasing the flow rate of gas through a gas pathway. Movement of the bar lever in the second direction causes a decrease in the flow rate of the gas through the gas pathway.
    Type: Application
    Filed: April 11, 2019
    Publication date: September 26, 2019
    Inventors: Cristiano Dalvi, Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Hung Vo
  • Publication number: 20190254578
    Abstract: A tissue profile wellness monitor measures a physiological parameter, generates a tissue profile, defines limits and indicates when the tissue profile exceeds the defined limits. The physiological parameter is responsive to multiple wavelengths of optical radiation after attenuation by constituents of pulsatile blood flowing within a tissue site. The tissue profile is responsive to the physiological parameter. The limits are defined for at least a portion of the tissue profile.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 22, 2019
    Inventor: Marcelo M. Lamego
  • Publication number: 20190221966
    Abstract: A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 18, 2019
    Inventors: Massi Joe E. Kiani, Marcelo M. Lamego, Cristiano Dalvi, Hung Vo
  • Patent number: 10305775
    Abstract: A physiological test credit method determines if test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server. In various embodiments, the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: May 28, 2019
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Jeroen Poeze
  • Publication number: 20190150856
    Abstract: A robust alarm system has an alarm controller adapted to input an alarm trigger and to generate at least one alarm drive signal in response. Alarm subsystems input the alarm drive signal and activate one or more of multiple alarms accordingly. A subsystem function signal provides feedback to the alarm controller as to alarm subsystem integrity. A malfunction indicator is output from the alarm controller in response to a failure within the alarm subsystems.
    Type: Application
    Filed: September 12, 2018
    Publication date: May 23, 2019
    Inventors: Massi Joe E. Kiani, Mohamed Kheir Diab, Marcelo M. Lamego
  • Publication number: 20190142283
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana