Patents by Inventor Marcelo Malini Lamego

Marcelo Malini Lamego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11647924
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: May 16, 2023
    Assignee: True Wearables, Inc.
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Publication number: 20220202362
    Abstract: Monitoring devices and monitoring technology are disclosed for a number of applications. A monitoring device that attaches to a measurement site includes at least one of an optical sensor, a temperature sensor, or first and second electrical contact sensors. A monitoring device or a smart garment can be powered by one or more bio-batteries that is each formed by electrodes in contact with the user's body (e.g., skin) or an animal. Various method and algorithms can be used to process signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors. The signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors can be transmitted to a host device. An application program on a host device can process the signals to compute one or more physiological parameters, waveform data, trend data, and/or one or more reports.
    Type: Application
    Filed: July 27, 2020
    Publication date: June 30, 2022
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO, Isadora Buticosky LAMEGO, Larissa Buticosky LAMEGO
  • Patent number: 11317283
    Abstract: A medical device includes a printed circuit board-battery assembly, a tape encapsulation assembly wrapped around the PCB-battery assembly, and a second removable tab positioned on a surface of the tape encapsulation assembly. The second removable tab provides an adhesive layer on a surface of the medical device when the second removable tab is removed from the medical device. The PCB includes the electronic circuitry that performs the functionalities of the medical device, including an optical sensor that comprises at least one light source to emit light towards a measurement site of a user and at least one photodetector to receive light returned from the measurement site. The medical device can connect to a host computing device that performs various operations, including, but not limited to, authenticating the medical device, causing measurement values such as blood oxygen saturation (SpO2), pulse rate (PR), and a perfusion index (PI) to be provided.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: April 26, 2022
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Patent number: 11109783
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: September 7, 2021
    Assignee: True Wearables, Inc.
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Publication number: 20210022676
    Abstract: Monitoring devices and monitoring technology are disclosed for a number of applications. A monitoring device that attaches to a measurement site includes at least one of an optical sensor, a temperature sensor, or first and second electrical contact sensors. A monitoring device or a smart garment can be powered by one or more bio-batteries that is each formed by electrodes in contact with the user's body (e.g., skin) or an animal. Various method and algorithms can be used to process signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors. The signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors can be transmitted to a host device. An application program on a host device can process the signals to compute one or more physiological parameters, waveform data, trend data, and/or one or more reports.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 28, 2021
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO, Isadora Buticosky LAMEGO, Larissa Buticosky LAMEGO
  • Publication number: 20200330012
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO
  • Publication number: 20200196928
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO
  • Patent number: 10659963
    Abstract: A medical device includes a printed circuit board-battery assembly, a tape encapsulation assembly wrapped around the PCB-battery assembly, and a second removable tab positioned on a surface of the tape encapsulation assembly. The second removable tab provides an adhesive layer on a surface of the medical device when the second removable tab is removed from the medical device. The PCB includes the electronic circuitry that performs the functionalities of the medical device, including an optical sensor that comprises at least one light source to emit light towards a measurement site of a user and at least one photodetector to receive light returned from the measurement site. The medical device can connect to a host computing device that performs various operations, including, but not limited to, authenticating the medical device, causing measurement values such as blood oxygen saturation (SpO2), pulse rate (PR), and a perfusion index (PI) to be provided.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 19, 2020
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Patent number: 10646144
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: May 12, 2020
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Publication number: 20200060555
    Abstract: Clinical-grade monitoring technology is disclosed for a number of applications where low-cost, wireless, multi-parameter, single-use and multi-use medical and fitness and/or wellness devices are useful and beneficial. A monitoring device that attaches or is placed on a measurement site includes at least one of an optical sensor, a temperature sensor, or first and second electrical contact sensors. Signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors can be transmitted to a host device. An application program on a host device can process the signals to compute one or more physiological parameters, waveform data, trend data, and/or one or more reports.
    Type: Application
    Filed: August 26, 2019
    Publication date: February 27, 2020
    Inventors: Marcelo Malini Lamego, Isadora Buticosky Lamego, Larissa Buticosky Lamego
  • Publication number: 20180110450
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Application
    Filed: December 7, 2016
    Publication date: April 26, 2018
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego