Patents by Inventor Marcin Grigoriew

Marcin Grigoriew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9416256
    Abstract: A fire retardant and antistatic polyurethane elastomer free of mercury and having a Shore A hardness of at least 30 is prepared from a polyol component and a prepolymer (e.g., an isocyanate) component. The polyol component comprises (A) a saturated polyester polyol of ethylene/butane/adipate of a nominal molecular weight and with a functionality of 2 or more, (B) a polyester polyol of ethylene/trimethylol propane/neopentyl adipate of nominal molecular weight and with a functionality of 2.5 or more, (C) an optional glycol chain extender, (D) an optional polymethyl alkyl siloxane defoamer, (E) an optional desiccant paste, (F) an optional polybutadiene oligomer, (G) an antistatic agent, (H) an optional surface modified fumed silica, (I) tris(2-chloro-1-methylethyl)phosphate flame retardant, (J) ammonium polyphosphate flame retardant, and (K) an organometallic catalyst other than a mercury-based organometallic catalyst, e.g., a tin-based catalyst.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: August 16, 2016
    Assignee: Dow Global Technologies LLC
    Inventor: Marcin Grigoriew
  • Publication number: 20160130466
    Abstract: A method for forming a polyurethane coating on an industrial roller includes applying a coating that is a product of a coating forming reaction mixture, which includes a prepolymer component and a curative component, to an industrial roller. The prepolymer component includes a polycarbonate prepolymer, which is a product of a prepolymer forming reaction mixture that includes an isocyanate component and a polycarbonate polyol, and the prepolymer component is present in the coating forming reaction mixture in an amount from 30 wt % to 80 wt %, based on a total weight of the coating forming reaction mixture. The curative component includes a chlorinated aromatic diamine curative agent, and the curative component is present in the coating forming reaction mixture in an amount from 5 wt % to 20 wt %, based on the total weight of the coating forming reaction mixture. Further, the coating is cured to form a polyurethane coating layer on the industrial roller.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 12, 2016
    Inventors: Subodh P Jagtap, Marcin Grigoriew, Harpreet Singh, William H. Heath, Amarnath Singh
  • Patent number: 9096707
    Abstract: Embodiments of the invention provide for paper mill equipment that can better withstand the conditions of a paper mill. Embodiments encompass paper mill equipment that incorporate a polyurethane layer having a hysteresis value of less than 70% and a permanent set of less than 30%. The polyurethane layer includes a polyurethane produced by curing a mixed composition. The mixed composition includes at least a urethane prepolymer (A) and at least a curing agent (B) having an active hydrogen group (H). The urethane prepolymer (A) has at least one terminal isocyanate group and is obtained by reacting at least a polyisocyanate compound (a) with at least a polycarbonate diol compound (b) having a number average molecular weight of at least 1500 g/mol. The curing agent (B) includes at least an amine compound. The elastomer compositions are also useful to coat the acid pickling roller in the steel industry.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: August 4, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Harpreet Singh, William H. Heath, Amarnath Singh, Asfar N. Chowdhury, Marcin Grigoriew, Kaoru Aou
  • Publication number: 20150203665
    Abstract: A fire retardant and antistatic polyurethane elastomer free of mercury and having a Shore A hardness of at least 30 is prepared from a polyol component and a prepolymer (e.g., an isocyanate) component. The polyol component comprises (A) a saturated polyester polyol of ethylene/butane/adipate of a nominal molecular weight and with a functionality of 2 or more, (B) a polyester polyol of ethylene/trimethylol propane/neopentyl adipate of nominal molecular weight and with a functionality of 2.5 or more, (C) an optional glycol chain extender, (D) an optional polymethyl alkyl siloxane defoamer, (E) an optional desiccant paste, (F) an optional polybutadiene oligomer, (G) an antistatic agent, (H) an optional surface modified fumed silica, (I) tris(2-chloro-1-methylethyl)phosphate flame retardant, (J) ammonium polyphosphate flame retardant, and (K) an organometallic catalyst other than a mercury-based organometallic catalyst, e.g., a tin-based catalyst.
    Type: Application
    Filed: July 18, 2013
    Publication date: July 23, 2015
    Applicant: Dow Global Technologies LLC
    Inventor: Marcin Grigoriew
  • Publication number: 20140352904
    Abstract: Embodiments of the invention provide for paper mill equipment that can better withstand the conditions of a paper Mill. Embodiments encompass paper mill equipment that incorporate a polyurethane layer having a hysteresis value of less than 70% and a permanent set of less than 30%. The polyurethane layer includes a polyurethane produced by curing a mixed composition. The mixed composition includes at least a urethane prepolymer (A) and at least a curing agent (B) having an active hydrogen group (H). The urethane prepolymer (A) has at least one terminal isocyanate group and is obtained by reacting at least a polyisocyanate compound (a) with at least a polycarbonate diol compound (b) having a number average molecular weight of at least 1500 g/mol. The curing agent (B) includes at least an amine compound. The elastomer compositions are also useful to coat the acid pickling roller in the steel industry.
    Type: Application
    Filed: February 27, 2013
    Publication date: December 4, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Harpreet Singh, William H. Heath, Amarnath Singh, Asfar N. Chowdhury, Marcin Grigoriew, Kaoru Aou