Patents by Inventor Marco A. Mercader

Marco A. Mercader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12075980
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: September 3, 2024
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20230293000
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Application
    Filed: January 20, 2023
    Publication date: September 21, 2023
    Applicants: 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 11559352
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 24, 2023
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 11559192
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 24, 2023
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20220142482
    Abstract: Systems, catheter and methods for treating Atrial Fibrillation (AF) are provided, which are configure to illuminate a heart tissue having a lesion site; obtain a mitochondrial nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence intensity from the illuminated heart tissue along a first line across the lesion site; create a 2-dimensional (2D) map of the depth of the lesion site along the first line based on the NADH fluorescence intensity; and determine a depth of the lesion site at a selected point along the first line from the 2D map, wherein a lower NADH fluorescence intensity corresponds to a greater depth in the lesion site and a higher NADH fluorescence intensity corresponds to an unablated tissue. The process may be repeated to create a 3 dimensional map of the depth of the lesion.
    Type: Application
    Filed: July 29, 2021
    Publication date: May 12, 2022
    Inventors: Marco A. Mercader, Narine Sarvazyan, Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana
  • Patent number: 11096584
    Abstract: Systems, catheter and methods for treating Atrial Fibrillation (AF) are provided, which are configure to illuminate a heart tissue having a lesion site; obtain a mitochondrial nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence intensity from the illuminated heart tissue along a first line across the lesion site; create a 2-dimensional (2D) map of the depth of the lesion site along the first line based on the NADH fluorescence intensity; and determine a depth of the lesion site at a selected point along the first line from the 2D map, wherein a lower NADH fluorescence intensity corresponds to a greater depth in the lesion site and a higher NADH fluorescence intensity corresponds to an unablated tissue. The process may be repeated to create a 3 dimensional map of the depth of the lesion.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 24, 2021
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Marco A. Mercader, Narine Sarvazyan, Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana
  • Publication number: 20200352425
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 12, 2020
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20200352645
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 12, 2020
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 10736512
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue includes a catheter having an expandable balloon at a distal end, an illumination device positioned within the balloon for propagating light from an external light source for illuminating a tissue being treated to excite native nicotinamide adenine dinucleotide hydrogen (NADH) in the tissue, and an imaging device positioned within the balloon for detecting fluorescence from the illuminated tissue, the imaging device being configured to communicate detected NADH fluorescence to an external fluorescence camera.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 11, 2020
    Assignee: The George Washington University
    Inventors: Marco A. Mercader, Matthew W. Kay, Narine Sarvazyan
  • Patent number: 10722301
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 28, 2020
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 10716462
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: July 21, 2020
    Assignees: The George Washington University, 460Medical, Inc.
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20180263476
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Patent number: 10076238
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: September 18, 2018
    Assignees: The George Washington University, LuxCath, LLC
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20160120599
    Abstract: Ablation visualization and monitoring systems and methods are provided. In some embodiments, such methods comprise applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with a light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventors: Omar Amirana, Kenneth C. Armstrong, James Bowen, Cinnamon Larson, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20150327753
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Application
    Filed: April 17, 2015
    Publication date: November 19, 2015
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20150231389
    Abstract: Arrhythmia is a condition involving a rapid or slow heart rhythm that temporarily complicates the postoperative recovery from open heart surgery. Arrhythmias can be caused by sinus node dysfunction—slow heart rate or abnormalities in atrial conduction and automaticity that predispose to rapid heart rates. Current temporary treatments for rapid atrial arrhythmias are medications or external electrical cardioversion shocks. The present invention describes a method of treatment of postoperative arrhythmias and a device that includes a multipolar plaque electrode implanted on the atrioventricular (AV) node fat pad during the initial open heart surgery, leads that exit the body, an external controller connected to the leads that delivers an electrical stimulus, and a system to monitor the heart in order to optimize cardiac performance through the selection of individual stimulation poles and the stimulus parameters.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Inventors: Marco A. MERCADER, Jeffrey MOAK
  • Patent number: 9084611
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue comprising: a catheter having a distal end and a proximal end; an inflatable balloon disposed about the distal end of the catheter; and an optical housing extending from the distal end of the catheter into the balloon, the optical housing being configured to position inside the balloon a light source for illuminating a tissue outside the balloon and a camera for imaging the illuminated tissue.
    Type: Grant
    Filed: September 22, 2012
    Date of Patent: July 21, 2015
    Assignees: The George Washington University, LuxCath, LLC
    Inventors: Omar Amirana, Kenneth C. Armstrong, Matthew W. Kay, Marco A. Mercader, Terrance J. Ransbury, Narine Sarvazyan
  • Publication number: 20150196202
    Abstract: Systems, catheter and methods for treating Atrial Fibrillation (AF) are provided, which are configure to illuminate a heart tissue having a lesion site; obtain a mitochondrial nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence intensity from the illuminated heart tissue along a first line across the lesion site; create a 2-dimensional (2D) map of the depth of the lesion site along the first line based on the NADH fluorescence intensity; and determine a depth of the lesion site at a selected point along the first line from the 2D map, wherein a lower NADH fluorescence intensity corresponds to a greater depth in the lesion site and a higher NADH fluorescence intensity corresponds to an unablated tissue. The process may be repeated to create a 3 dimensional map of the depth of the lesion.
    Type: Application
    Filed: November 14, 2014
    Publication date: July 16, 2015
    Inventors: Marco A. Mercader, Narine Sarvazyan, Terrance J. Ransbury, Kenneth C. Armstrong, Omar Amirana
  • Publication number: 20150164332
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue includes a catheter having an expandable balloon at a distal end, an illumination device positioned within the balloon for propagating light from an external light source for illuminating a tissue being treated to excite native nicotinamide adenine dinucleotide hydrogen (NADH) in the tissue, and an imaging device positioned within the balloon for detecting fluorescence from the illuminated tissue, the imaging device being configured to communicate detected NADH fluorescence to an external fluorescence camera.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 18, 2015
    Inventors: Marco A. Mercader, Matthew W. Kay, Narine Sarvazyan
  • Patent number: 9014789
    Abstract: Systems and methods for visualizing ablated tissue are disclosed. In some embodiments, a system for imaging tissue includes a catheter having an expandable balloon at a distal end, an illumination device positioned within the balloon for propagating light from an external light source for illuminating a tissue being treated to excite native nicotinamide adenine dinucleotide hydrogen (NADH) in the tissue, and an imaging device positioned within the balloon for detecting fluorescence from the illuminated tissue, the imaging device being configured to communicate detected NADH fluorescence to an external fluorescence camera.
    Type: Grant
    Filed: September 22, 2012
    Date of Patent: April 21, 2015
    Assignee: The George Washington University
    Inventors: Marco A. Mercader, Matthew W. Kay, Narine Sarvazyan