Patents by Inventor Marco Ciufolini

Marco Ciufolini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240309048
    Abstract: The present invention provides a method for preparing a micrococcin-based carboxylic acid compound and a micrococcin-based carboxylic acid compound prepared thereby, and the method for preparing a micrococcin-based carboxylic acid compound according to the present invention enables easy introduction of various functional groups by introducing a carboxyl group into a micrococcin compound.
    Type: Application
    Filed: June 27, 2022
    Publication date: September 19, 2024
    Applicant: A & J SCIENCE CO., LTD.
    Inventors: Hee-Jong HWANG, Young-Jin SON, Dahyun KIM, Jusuk LEE, Shyaka CLOVIS, Marco CIUFOLINI
  • Publication number: 20240294462
    Abstract: Provided herein is a method for the preparation of ionizable, cationic amino lipids using a doubly alkylated nucleophilic intermediate to produce a ketone. The ketone, or a corresponding alcohol, is subjected to one or more synthesis steps to add an ionizable moiety thereto. The method can be advantageously employed for the synthesis of unsymmetrical analogues of the above lipids that would be considerably more difficult to make by alternative strategies. The method can also be used to prepare symmetrical ionizable, cationic amino lipids with fewer steps and/or with the use of fewer hazardous chemicals than known synthesis methods.
    Type: Application
    Filed: February 15, 2024
    Publication date: September 5, 2024
    Applicant: NanoVation Therapeutics Inc.
    Inventors: Fariba Saadati, Huy Tran, Marco Ciufolini, N. D. Prasad Atmuri
  • Publication number: 20240277800
    Abstract: The present invention provides a method for preparing a micrococcin compound, and a pharmaceutical composition for the treatment and prevention of infection of a specific strain comprising a micrococcin compound, a solvate thereof, a hydrate thereof, a prodrug thereof, an isomer thereof, or a pharmaceutically acceptable salt thereof as effective component. In addition, the present invention provides an anti-inflammatory composition comprising the micrococcin compound, a solvate thereof, a hydrate thereof, a prodrug thereof, an isomer thereof, or a pharmaceutically acceptable salt thereof as an effective component.
    Type: Application
    Filed: May 19, 2022
    Publication date: August 22, 2024
    Applicant: A & J SCIENCE CO., LTD.
    Inventors: Hee-Jong HWANG, Young-Jin SON, Dahyun KIM, Jusuk LEE, Shyaka CLOVIS, Marco CIUFOLINI
  • Publication number: 20240116862
    Abstract: Provided herein is a compound having a structure of Formula (I): (Formula (I)) wherein: D is S, O or an ester; p is 1 to 6; L1 and/or L2 are independently linear or branched C1-C30 alkyl, optionally having one or more C?C double bonds of E or Z geometry; and wherein: if D is S then L1 and/or L2 are unsubstituted or substituted with one or more S; and if D is O or an ester, then L1 and/or L2 are substituted with one more S. The compound may be formulated in a lipid nanoparticle for use in the delivery of charged cargo such as nucleic acid. Further provided are methods for making the compound.
    Type: Application
    Filed: January 12, 2022
    Publication date: April 11, 2024
    Applicant: THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: Marco Ciufolini, Mai Lam Ferguson
  • Publication number: 20230416274
    Abstract: The present invention provides a novel compound, a solvate thereof, a hydrate thereof, a prodrug thereof, an isomer thereof, or a pharmaceutically acceptable salt thereof, a preparation method thereof, and an antibiotic composition comprising the same. The novel compound of the present invention having excellent antimicrobial activity is very useful for preventing and treating a bacterial infection.
    Type: Application
    Filed: November 18, 2021
    Publication date: December 28, 2023
    Inventors: Hee-Jong Hwang, Young-Jin Son, Dahyun Kim, Jusuk Lee, Marco Ciufolini
  • Publication number: 20220226480
    Abstract: The application relates to a lipid conjugate of formula M-X1-L wherein M is a molecule of interest such as a drug moiety; X1 is a linker group such as ester, ether or carbamate; and L is a lipid scaffold represented by formula (IId): -L1-[L2(H)(X2R)]n-L3-[L4(H)(X2R)]p-L5-L6 and wherein L comprises 5 to 40 carbon atoms and 0 to 2 carbon-carbon double bonds. The lipid conjugate can p be formulated in a drug delivery vehicle such as a lipid nanoparticle (LNP).
    Type: Application
    Filed: March 23, 2020
    Publication date: July 21, 2022
    Inventors: Sam Chen, Yuen Yi Tam, Joshua Zaifman, Marco Ciufolini
  • Publication number: 20180221279
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 9968554
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: May 15, 2018
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20150272951
    Abstract: A method of treating a lysosomal storage disease comprises administering a pyrimethamine derivative to a subject in need thereof.
    Type: Application
    Filed: June 2, 2015
    Publication date: October 1, 2015
    Inventors: Don MAHURAN, Michael TROPAK, Marco CIUFOLINI
  • Patent number: 8993573
    Abstract: Novel compounds selected from 2-(3-aminoaryl)amino-4-aryl-thiazoles of formula (I) that selectively modulate, regulate, and/or inhibit signal transductions mediated by certain native and/or mutant tyrosine kinases implicated in a variety of human and animal diseases such as cell proliferative metabolic, allergic and degenerative disorders. More particularly, these compounds are potent and selective c-kit inhibitors.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 31, 2015
    Assignee: AB Science
    Inventors: Marco Ciufolini, Camille Wermuth, Bruno Giethlen, Alain Moussy
  • Publication number: 20140356417
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 4, 2014
    Inventors: Peter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 8835435
    Abstract: Novel compounds selected from 2-(3-aminoaryl)amino-4-aryl-thiazoles of formula (I) that selectively modulate, regulate, and/or inhibit signal transductions mediated by certain native and/or mutant tyrosine kinases implicated in a variety of human and animal diseases such as cell proliferative metabolic, allergic and degenerative disorders. More particularly, these compounds are potent and selective c-kit inhibitors.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 16, 2014
    Assignee: AB Science
    Inventors: Marco Ciufolini, Camille Wermuth, Bruno Giethlen, Alain Moussy
  • Patent number: 8790691
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 29, 2014
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20140088108
    Abstract: Novel compounds selected from 2-(3-aminoaryl) amino-4-aryl-thiazoles of formula (I) that selectively modulate, regulate, and/or inhibit signal transductions mediated by certain native and/or mutant tyrosine kinases implicated in a variety of human and animal diseases such as cell proliferative metabolic, allergic and degenerative disorders. More particularly, these compounds are potent and selective c-kit inhibitors.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: AB SCIENCE
    Inventors: Marco CIUFOLINI, Camille WERMUTH, Bruno GIETHLEN, Alain MOUSSY
  • Patent number: 8568772
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 29, 2013
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Mauer, Igor Jigaltsev
  • Patent number: 8545877
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 1, 2013
    Assignee: University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 8545876
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 1, 2013
    Assignee: University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130236534
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 12, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130230582
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130230583
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev