Patents by Inventor Marco E. Sosa

Marco E. Sosa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9445166
    Abstract: A method may include determining, by a device, a wavelength identifier graph corresponding to an optical network based on a set of lightpath conflicts, for a set of optical signals, associated with a set of links and a set of nodes of the optical network. One or more optical signals may be associated with transmission via a super-channel. The method may further include selectively assigning, by the device, a wavelength identifier to an optical signal, of the set of optical signals, based on the wavelength identifier graph. The wavelength identifier being associated with a set of wavelength identifiers and corresponding to a wavelength of a set of wavelengths. The method may further include causing, by the device, the optical signal to utilize the wavelength, of the set of wavelengths, for transmission via the optical network.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: September 13, 2016
    Assignee: Infinera Corporation
    Inventors: Steven Joseph Hand, Onur Turkcu, Sudhindra Aithal Kota, Nitin K. Goel, Marco E. Sosa
  • Publication number: 20160057519
    Abstract: A method may include determining, by a device, a wavelength identifier graph corresponding to an optical network based on a set of lightpath conflicts, for a set of optical signals, associated with a set of links and a set of nodes of the optical network. One or more optical signals may be associated with transmission via a super-channel. The method may further include selectively assigning, by the device, a wavelength identifier to an optical signal, of the set of optical signals, based on the wavelength identifier graph. The wavelength identifier being associated with a set of wavelength identifiers and corresponding to a wavelength of a set of wavelengths. The method may further include causing, by the device, the optical signal to utilize the wavelength, of the set of wavelengths, for transmission via the optical network.
    Type: Application
    Filed: December 30, 2014
    Publication date: February 25, 2016
    Inventors: Steven Joseph HAND, Onur TURKCU, Sudhindra Aithal KOTA, Nitin K. GOEL, Marco E. SOSA
  • Patent number: 9191114
    Abstract: A network device is configured to store parameters identifying a respective quality of service (QoS) to apply to corresponding different types of data flows; initiate establishment of a network channel between a source device and a destination device through an optical network; receive first and second data flows destined for the destination device, where the first data flow and the second data flow may have first and second data flow types; identify a first QoS and a different second QoS to apply to the first and second data flows based on the first and second data flow types and based on the parameters; apply the first QoS to the first data flow and the second QoS to the second data flow to form processed first and second data flows; and transmit, via the network channel, the processed first and second data flows towards the destination device.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 17, 2015
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Satyajeet Singh Ahuja, Jan Bialkowski, Marco E. Sosa
  • Patent number: 8942557
    Abstract: Methods and systems are disclosed including receiving, by circuitry of a node conforming to GMPLS protocol, a signal comprising at least one of an optical signal attribute indicative of parameters of a super-channel, the super-channel including a plurality of optical carriers, each of which having a corresponding one of a plurality of wavelengths and being modulated to carry a corresponding one of a plurality of data streams, the super-channel being provisioned in the optical network as one optical channel, wherein the optical signal attribute is one of: quantity of wavelengths of the super-channel, wavelength center frequency of the super-channel, wavelength modulation of the super-channel, wavelength baudrate of the super-channel, and wavelength FEC type of the super-channel. The node further receiving information indicative of frequency slices in use by the super-channel and calculating, using algorithms conforming to CSPF-TE protocol, a path of a second super-channel.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 27, 2015
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Michael Francis Van Leeuwen, Marco E. Sosa, Vinayak Dangui, Abinder Dhillon
  • Publication number: 20140169788
    Abstract: A network device is configured to store parameters identifying a respective quality of service (QoS) to apply to corresponding different types of data flows; initiate establishment of a network channel between a source device and a destination device through an optical network; receive first and second data flows destined for the destination device, where the first data flow and the second data flow may have first and second data flow types; identify a first QoS and a different second QoS to apply to the first and second data flows based on the first and second data flow types and based on the parameters; apply the first QoS to the first data flow and the second QoS to the second data flow to form processed first and second data flows; and transmit, via the network channel, the processed first and second data flows towards the destination device.
    Type: Application
    Filed: March 28, 2013
    Publication date: June 19, 2014
    Applicant: Infinera Corporation
    Inventors: Iftekhar HUSSAIN, Satyajeet Singh AHUJA, Jan BIALKOWSKI, Marco E. SOSA
  • Patent number: 8553725
    Abstract: A node is configured to receive an instruction to establish a channel having a bandwidth that corresponds to an operating spectrum an optical fiber; obtain information that identifies a channel spacing and a pointer that identifies where, within the spectrum, to establish bandwidth allocations; identify a group of bandwidth segments based on the spectrum and the channel spacing; and generate bit words that correspond to the bandwidth allocations, where the bit words includes bits that, when set to a value, cause sets of segments to be reserved within the spectrum, and where the sets of segments identify where the bandwidth allocations begin and end, within the spectrum, relative to the pointer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 8, 2013
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Abinder Dhillon, Zhong Pan, Marco E. Sosa
  • Publication number: 20130230316
    Abstract: Methods and systems are disclosed including receiving, by circuitry of a node conforming to GMPLS protocol, a signal comprising at least one of an optical signal attribute indicative of parameters of a super-channel, the super-channel including a plurality of optical carriers, each of which having a corresponding one of a plurality of wavelengths and being modulated to carry a corresponding one of a plurality of data streams, the super-channel being provisioned in the optical network as one optical channel, wherein the optical signal attribute is one of: quantity of wavelengths of the super-channel, wavelength center frequency of the super-channel, wavelength modulation of the super-channel, wavelength baudrate of the super-channel, and wavelength FEC type of the super-channel. The node further receiving information indicative of frequency slices in use by the super-channel and calculating, using algorithms conforming to CSPF-TE protocol, a path of a second super-channel.
    Type: Application
    Filed: June 28, 2012
    Publication date: September 5, 2013
    Inventors: Iftekhar Hussain, Michael Francis Van Leeuwen, Marco E. Sosa, Vinayak Dangui, Abinder Dhillon
  • Patent number: 8442040
    Abstract: The present invention provides a system, apparatus and method for modularly adapting a network node architecture to function in one of a plurality of potential node types. The architecture includes a configurable switching element, integrated optics, and a plurality of modules that allow a “type” of node to be adapted and configured within the base architecture. The module interfaces may be optical or electrical and be used to construct various different types of nodes including regenerators, add/drop nodes, terminal nodes, and multi-way nodes using the same base architecture.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 14, 2013
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Ting-Kuang Chiang, Marco E. Sosa, Mark Yin, Edward E. Sprague
  • Publication number: 20130084075
    Abstract: A node is configured to receive an instruction to establish a channel having a bandwidth that corresponds to an operating spectrum an optical fiber; obtain information that identifies a channel spacing and a pointer that identifies where, within the spectrum, to establish bandwidth allocations; identify a group of bandwidth segments based on the spectrum and the channel spacing; and generate bit words that correspond to the bandwidth allocations, where the bit words includes bits that, when set to a value, cause sets of segments to be reserved within the spectrum, and where the sets of segments identify where the bandwidth allocations begin and end, within the spectrum, relative to the pointer.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: INFINERA CORPORATION
    Inventors: Iftekhar HUSSAIN, Abinder DHILLON, Zhong PAN, Marco E. SOSA
  • Patent number: 8300994
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 30, 2012
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Publication number: 20110249936
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: February 7, 2011
    Publication date: October 13, 2011
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, JR., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Patent number: 7885492
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: February 8, 2011
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Patent number: 7716560
    Abstract: The present invention provides a system, apparatus and method for accurately identifying optical or digital impairments on a span using FEC errors identified at an intermediary node. This information may be provided to an end node within a network to switch to a redundant path around the impaired optical path or span therein. In one embodiment of the invention, signal degradation is identified by analyzing FEC data within a FEC decoded signal at an intermediary node. An identification of signal degradation provides an indication of a potential failing span within an optical link, which may be provided in-band or out-of-band to a terminal node so that a signal may be switched around a failing path, or span therein, prior to an actual failure event.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 11, 2010
    Assignee: Infinera Corporation
    Inventors: Edward E. Sprague, Marco E. Sosa, Daniel P. Murphy, Christopher C. Liou, Ting-Kuang Chiang, Drew D. Perkins
  • Patent number: 7672546
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 2, 2010
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Marco E. Sosa
  • Patent number: 7519246
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 14, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Jr., Marco E. Sosa
  • Publication number: 20040067006
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: December 11, 2002
    Publication date: April 8, 2004
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Marco E. Sosa