Patents by Inventor Marco Liscidini

Marco Liscidini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384523
    Abstract: There is described a resonant interferometric coupler generally having: a substrate; a bus waveguide having in serial connection an input section, a bent section and an output section; a first resonator having a first evanescent coupling point with the input section and a second evanescent coupling point with the output section, the first resonator having first resonances; an interferometer having a first arm path extending along the bent section between the first and second evanescent coupling points, and a second arm path extending along the first resonator between the first and second evanescent coupling points; and a second resonator having a third evanescent coupling point with the bent section, the second resonator having a second resonance overlapping with one of the first resonances and across which a first phase shift is imparted, thereby causing interference at the second evanescent coupling point.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 30, 2023
    Inventors: Marco LISCIDINI, Matteo Menotti, Zachary Vernon, Alice Viola
  • Patent number: 11003046
    Abstract: A photonic device comprises a plurality of resonators and a plurality of optical channels. Each resonator from the plurality of resonators has a set of resonance frequencies independently selected from a set of resonance frequencies of each remaining resonator from the plurality of resonators. Each resonator from the plurality of resonators lacks substantially any linear coupling between each remaining resonator from the plurality of resonators. The plurality of resonators defines a spatial overlap region between at least two resonators from the plurality of resonators such that nonlinear optical processes are substantially optimized during operation. A plurality of optical channels is operatively coupled to the plurality of resonators. The plurality of optical channels is configured to receive light from the plurality resonators and configured to send light into the plurality of resonators.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: May 11, 2021
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Marco Liscidini, Matteo Menotti, Blair Morrison, John Sipe, Kang Tan, Zachary Vernon
  • Publication number: 20210080804
    Abstract: A photonic device comprises a plurality of resonators and a plurality of optical channels. Each resonator from the plurality of resonators has a set of resonance frequencies independently selected from a set of resonance frequencies of each remaining resonator from the plurality of resonators. Each resonator from the plurality of resonators lacks substantially any linear coupling between each remaining resonator from the plurality of resonators. The plurality of resonators defines a spatial overlap region between at least two resonators from the plurality of resonators such that nonlinear optical processes are substantially optimized during operation. A plurality of optical channels is operatively coupled to the plurality of resonators. The plurality of optical channels is configured to receive light from the plurality resonators and configured to send light into the plurality of resonators.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 18, 2021
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Marco LISCIDINI, Matteo MENOTTI, Blair MORRISON, John SIPE, Kang TAN, Zachary VERNON
  • Patent number: 9658221
    Abstract: The invention features methods and diffraction-based devices for the detection of specific analytes. The devices of the invention contain a periodic dielectric multilayer, which allows for the propagation of Bloch surface waves (BSWs) at the surface of the multilayer, thereby increasing the sensitivity of the device.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 23, 2017
    Assignee: The Governing Council of the University of Toronto
    Inventors: Marco Liscidini, John Sipe
  • Patent number: 9352543
    Abstract: Provided are methods of patterning porous materials on the micro- and nanometer scale using a direct imprinting technique. The present methods of direct imprinting of porous substrates (“DIPS”), can utilize reusable stamps that may be directly applied to an underlying porous material to selectively, mechanically deform and/or crush particular regions of the porous material, creating a desired structure. The process can be performed in a matter of seconds, at room temperature or higher temperatures, and eliminates the requirement for intermediate masking materials and etching chemistries.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: May 31, 2016
    Assignee: Vanderbilt University
    Inventors: Sharon M. Weiss, Judson D. Ryckman, Marco Liscidini, John E. Sipe
  • Publication number: 20160087133
    Abstract: Light concentration device comprising: —a primary luminescent solar concentrator (LSC) having a polygonal, circular or elliptic form, comprising at least one photoluminescent compound having a first absorption range and a first emission range; —at least a secondary luminescent solar concentrator (LSC) positioned outside said primary luminescent solar concentrator (LSC), said secondary luminescent solar concentrator (LSC) comprising at least one photoluminescent compound having a second absorption range superimposable to said first emission range and a second emission range. Said light concentration device can be advantageously used in photovoltaic devices (or solar devices) such as, for example, photovoltaic cells (or solar cells), photoelectrolytic cells. Said light concentration device can also be advantageously used in photovoltaic windows.
    Type: Application
    Filed: June 25, 2014
    Publication date: March 24, 2016
    Applicant: ENI S.P.A.
    Inventors: Roberto FUSCO, Marco LISCIDINI, Sthy Warren FLORES DAORTA, Lucio ANDREANI
  • Patent number: 8349617
    Abstract: Diffraction gratings comprising a substrate with protrusions extending therefrom. In one embodiment, the protrusions are made of a porous material, for example porous silicon with a porosity of greater than about 10%. The diffraction grating may also be constructed from multiple layers of porous material, for example porous silicon with a porosity of greater than about 10%, with protrusion of attached thereto. In some embodiments the protrusions may be made from photoresist or another polymeric material. The gratings are the basis for sensitive sensors. In some embodiments, the sensors are functionalized with selective binding species, to produce sensors that specifically bind to target molecules, for example chemical or biological species of interest.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: January 8, 2013
    Assignee: Vanderbilt University
    Inventors: Sharon M. Weiss, Judson D. Ryckman, Christopher Kang, Marco Liscidini, John E. Sipe
  • Publication number: 20110236998
    Abstract: The invention features methods and diffraction-based devices for the detection of specific analytes. The devices of the invention contain a periodic dielectric multilayer, which allows for the propagation of Bloch surface waves (BSWs) at the surface of the multilayer, thereby increasing the sensitivity of the device.
    Type: Application
    Filed: August 28, 2009
    Publication date: September 29, 2011
    Inventors: Marco Liscidini, John Sipe
  • Publication number: 20110059538
    Abstract: Diffraction gratings comprising a substrate with protrusions extending therefrom. In one embodiment, the protrusions are made of a porous material, for example porous silicon with a porosity of greater than about 10%. The diffraction grating may also be constructed from multiple layers of porous material, for example porous silicon with a porosity of greater than about 10%, with protrusion of attached thereto. In some embodiments the protrusions may be made from photoresist or another polymeric material. The gratings are the basis for sensitive sensors. In some embodiments, the sensors are functionalized with selective binding species, to produce sensors that specifically bind to target molecules, for example chemical or biological species of interest.
    Type: Application
    Filed: May 31, 2010
    Publication date: March 10, 2011
    Inventors: Sharon M. Weiss, Judson D. Ryckman, Christopher Kang, Marco Liscidini, John E. Sipe
  • Publication number: 20110056398
    Abstract: Provided are methods of patterning porous materials on the micro- and nanometer scale using a direct imprinting technique. The present methods of direct imprinting of porous substrates (“DIPS”), can utilize reusable stamps that may be directly applied to an underlying porous material to selectively, mechanically deform and/or crush particular regions of the porous material, creating a desired structure. The process can be performed in a matter of seconds, at room temperature or higher temperatures, and eliminates the requirement for intermediate masking materials and etching chemistries.
    Type: Application
    Filed: May 31, 2010
    Publication date: March 10, 2011
    Inventors: Sharon M. Weiss, Judson D. Ryckman, Marco Liscidini, John E. Sipe