Patents by Inventor Marco Zuliani

Marco Zuliani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170157
    Abstract: The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 1, 2019
    Assignee: Apple Inc.
    Inventors: Claus Molgaard, Brett M. Keating, George E. Williams, Marco Zuliani, Vincent Y. Wong, Frank Doepke, Ethan J. Tira-Thompson
  • Patent number: 10147459
    Abstract: Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: December 4, 2018
    Assignee: Apple Inc.
    Inventors: Bartlomiej W. Rymkowski, Marco Zuliani
  • Publication number: 20180088996
    Abstract: A method may include accessing a data processing architecture associated with a neural network to determine dependencies between intermediate data layers of the neural network; obtaining dimensions of the intermediate data layers in the neural network; calculating a minimum number of data storage portions for executing the neural network based on the dependencies; determining a memory allocation size for each respective data storage portion of the data storage portions based on the dimensions and dependencies; allocating memory on a storage device for each data storage portion in accordance with its respective determined memory allocation size.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 29, 2018
    Applicant: Apple Inc.
    Inventors: Francesco Rossi, Marco Zuliani
  • Publication number: 20180082715
    Abstract: Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Bartlomiej W. Rymkowski, Marco Zuliani
  • Publication number: 20180082407
    Abstract: Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Bartlomiej W. Rymkowski, Marco Zuliani
  • Patent number: 9773192
    Abstract: Techniques to identify and track a pre-identified region-of-interest (ROI) through a temporal sequence of frames/images are described. In general, a down-sampled color gradient (edge map) of an arbitrary sized ROI from a prior frame may be used to generate a small template. This initial template may be used to identify a region of a new or current frame that may be overscan and used to create a current frame's edge map. By comparing the prior frame's template to the current frame's edge map, a cost value or image may be found and used to identify the current frame's ROI center. The size of the current frame's ROI may be found by varying the size of putative new ROIs and testing for their congruence with the prior frame's template. Subsequent ROI's for subsequent frames may be identified to, effectively, track an arbitrarily sized ROI through a sequence of video frames.
    Type: Grant
    Filed: June 7, 2015
    Date of Patent: September 26, 2017
    Assignee: Apple Inc.
    Inventors: Xiaoxing Li, Geoffrey T. Anneheim, Jianping Zhou, Richard D. Seely, Marco Zuliani
  • Patent number: 9749524
    Abstract: In one embodiment, an image-capturing device includes a camera, one or more motion-estimating devices to detect motion data for the device, and a processing system which is configured to automatically estimate a first direction of a sweep motion of the image-capturing device based on the motion data. The processing system is further configured to automatically estimate a second direction of the sweep motion of the image-capturing device based on images captured by the image-capturing device and to automatically select the first direction or the second direction of the sweep motion.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 29, 2017
    Assignee: Apple Inc.
    Inventors: Frank Doepke, Marco Zuliani
  • Patent number: 9686539
    Abstract: Systems, methods, and computer readable media for calibrating two cameras (image capture units) using a non-standard, and initially unknown, calibration object are described. More particularly, an iterative approach to determine the structure and pose of an target object in an unconstrained environment are disclosed. The target object may be any of a number of predetermined objects such as a specific three dimensional (3D) shape, a specific type of animal (e.g., dogs), or the face of an arbitrary human. Virtually any object whose structure may be expressed in terms of a relatively low dimensional parametrized model may be used as a target object. The identified object (i.e., its pose and shape) may be used as input to a bundle adjustment operation resulting in camera calibration.
    Type: Grant
    Filed: June 12, 2016
    Date of Patent: June 20, 2017
    Assignee: Apple Inc.
    Inventors: Marco Zuliani, Claus Molgaard, Paul M. Hubel
  • Publication number: 20170091439
    Abstract: Managing a secure session includes detecting a login event at an electronic device using a first login method to initiate a secure session, capturing an initial image at a same time as the login event, capturing initial sensor data at the same time as the login event, monitoring for changes in the sensor data during the secure session, maintaining the secure session based on the initial sensor data and the monitored changes from the initial sensor data, and during the secure session, permitting access to the electronic device using reidentification.
    Type: Application
    Filed: May 31, 2016
    Publication date: March 30, 2017
    Inventors: Vinay Sharma, Marco Zuliani
  • Patent number: 9542585
    Abstract: A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: January 10, 2017
    Assignee: Apple Inc.
    Inventors: George Williams, Benjamin Olson, Sebastien Beysserie, Ethan Tira-Thompson, Jianping Zhou, Claus Molgaard, Todd Sachs, Rudolph van der Merwe, Marco Zuliani
  • Publication number: 20170006251
    Abstract: Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Inventors: Brett Keating, Vincent Wong, Todd Sachs, Claus Molgaard, Michael Rousson, Elliott Harris, Justin Titi, Karl Hsu, Jeff Brasket, Marco Zuliani
  • Publication number: 20160358341
    Abstract: Techniques to identify and track a pre-identified region-of-interest (ROI) through a temporal sequence of frames/images are described. In general, a down-sampled color gradient (edge map) of an arbitrary sized ROI from a prior frame may be used to generate a small template. This initial template may be used to identify a region of a new or current frame that may be overscan and used to create a current frame's edge map. By comparing the prior frame's template to the current frame's edge map, a cost value or image may be found and used to identify the current frame's ROI center. The size of the current frame's ROI may be found by varying the size of putative new ROIs and testing for their congruence with the prior frame's template. Subsequent ROI's for subsequent frames may be identified to, effectively, track an arbitrarily sized ROI through a sequence of video frames.
    Type: Application
    Filed: June 7, 2015
    Publication date: December 8, 2016
    Inventors: Xiaoxing Li, Geoffrey T. Anneheim, Jianping Zhou, Richard D. Seely, Marco Zuliani
  • Publication number: 20160358634
    Abstract: The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
    Type: Application
    Filed: September 25, 2015
    Publication date: December 8, 2016
    Inventors: Claus Molgaard, Brett M. Keating, George E. Williams, Marco Zuliani, Vincent Y. Wong, Frank Doepke, Ethan J. Tira-Thompson
  • Patent number: 9516223
    Abstract: Systems, methods, and computer readable media for stitching or aligning multiple images (or portions of images) to generate a panoramic image are described. In general, techniques are disclosed for using motion data (captured at substantially the same time as image data) to align images rather than performing image analysis and/or registration operations. More particularly, motion data may be used to identify the rotational change between successive images. The identified rotational change, in turn, may be used to calculate a motion vector that describes the change in position between a point in a first image and a corresponding point in a subsequent image. The motion vector may be utilized to align successive images in an image sequence based on the motion data associated with the images.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 6, 2016
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Marco Zuliani
  • Patent number: 9092853
    Abstract: A method for dynamically calibrating rotational offset in a device includes obtaining an image captured by a camera of the device. Orientation information of the device at the time of image capture may be associated with the image. Pixel data of the image may be analyzed to determine an image orientation angle for the image. A device orientation angle may be determined from the orientation information. A rotational offset, based on the image orientation angle and the device orientation angle, may be determined. The rotational offset is relative to the camera or orientation sensor. A rotational bias may be determined from statistical analysis of numerous rotational offsets from numerous respective images. In some embodiments, various thresholds and predetermined ranges may be used to exclude some rotational offsets from the statistical analysis or to discontinue processing for that image.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: July 28, 2015
    Assignee: Apple Inc.
    Inventors: Todd S. Sachs, Kevin L. Hunter, Marco Zuliani, Claus Molgaard
  • Patent number: 9042679
    Abstract: Systems, methods, and computer readable media to register images in real-time and that are capable of producing reliable registrations even when the number of high frequency image features is small. The disclosed techniques may also provide a quantitative measure of a registration's quality. The latter may be used to inform the user and/or to automatically determine when visual registration techniques may be less accurate than motion sensor-based approaches. When such a case is detected, an image capture device may be automatically switched from visual-based to sensor-based registration. Disclosed techniques quickly determine indicators of an image's overall composition (row and column projections) which may be used to determine the translation of a first image, relative to a second image. The translation so determined may be used to align/register the two images.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: May 26, 2015
    Assignee: Apple Inc.
    Inventors: Marco Zuliani, Kevin L. Hunter, Jianping Zhou, Todd Sachs, Frank Doepke
  • Publication number: 20150071547
    Abstract: Systems and methods for improving automatic selection of keeper images from a commonly captured set of images are described. A combination of image type identification and image quality metrics may be used to identify one or more images in the set as keeper images. Image type identification may be used to categorize the captured images into, for example, three or more categories. The categories may include portrait, action, or “other.” Depending on the category identified, the images may be analyzed differently to identify keeper images. For portrait images, an operation may be used to identify the best set of faces. For action images, the set may be divided into sections such that keeper images selected from each section tell the story of the action. For the “other” category, the images may be analyzed such that those having higher quality metrics for an identified region of interest are selected.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Applicant: Apple Inc.
    Inventors: Brett Keating, Vincent Wong, Todd Sachs, Claus Molgaard, Michael Rousson, Elliott Harris, Justin Titi, Karl Hsu, Jeff Brasket, Marco Zuliani
  • Publication number: 20150035991
    Abstract: A method for dynamically calibrating rotational offset in a device includes obtaining an image captured by a camera of the device. Orientation information of the device at the time of image capture may be associated with the image. Pixel data of the image may be analyzed to determine an image orientation angle for the image. A device orientation angle may be determined from the orientation information. A rotational offset, based on the image orientation angle and the device orientation angle, may be determined. The rotational offset is relative to the camera or orientation sensor. A rotational bias may be determined from statistical analysis of numerous rotational offsets from numerous respective images. In some embodiments, various thresholds and predetermined ranges may be used to exclude some rotational offsets from the statistical analysis or to discontinue processing for that image.
    Type: Application
    Filed: October 13, 2014
    Publication date: February 5, 2015
    Inventors: Todd S. Sachs, Kevin L. Hunter, Marco Zuliani, Claus Molgaard
  • Publication number: 20150036945
    Abstract: Methods and systems for an image construction component capable of generating pixel information for certain regions of an image based on other, existing regions of the image. For example, the image construction component may identify a target block of pixels for which to generate pixel information and then use pixel information for pixels surrounding the target block of pixels in order to identify similar image information within pixels in another part of the image. These identified pixels may then be used in defining the pixel information of the target block of pixels and also used in blending the target block of pixels with the defined pixels surrounding the target block of pixels.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Apple Inc.
    Inventor: Marco Zuliani
  • Publication number: 20140363044
    Abstract: A method to improve the efficiency of the detection and tracking of machine-readable objects is disclosed. The properties of image frames may be pre-evaluated to determine whether a machine-readable object, even if present in the image frames, would be likely to be detected. After it is determined that one or more image frames have properties that may enable the detection of a machine-readable object, image data may be evaluated to detect the machine-readable object. When a machine-readable object is detected, the location of the machine-readable object in a subsequent frame may be determined based on a translation metric between the image frame in which the object was identified and the subsequent frame rather than a detection of the object in the subsequent frame. The translation metric may be identified based on an evaluation of image data and/or motion sensor data associated with the image frames.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Inventors: George Williams, Benjamin Olson, Sebastien Beysserie, Ethan Tira-Thompson, Jianping Zhou, Claus Molgaard, Todd Sachs, Rudolph van der Merwe, Marco Zuliani