Patents by Inventor Marco Zwinkels

Marco Zwinkels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889063
    Abstract: The present invention relates to a method of making cutting tools comprising a substrate having a hard phase and a binder phase, the method comprising forming green powder compacts using powder metallurgical techniques, charging the green powder compacts, placed on one or several trays, in a furnace and sintering the green powder compacts wherein the furnace comprises an insulation package, at least three individually controlled heating elements located inside the insulation package including a vertical heating element, an upper horizontal heating element arranged in an upper part of the furnace, and a lower horizontal heating element arranged in a lower part of the furnace, wherein operating the at least three heating elements such that an average controlled cooling rate from a sintering temperature down to at least a solidification temperature of the binder phase is 0.1-4.0° C./min, and a sintering furnace operable to obtain a controlled cooling rate.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 18, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anders Karlsson, Gunilla Anderson, Peter Björkhagen, Per Gustafson, Marco Zwinkels
  • Publication number: 20110008199
    Abstract: The present invention relates to a method of making cutting tools comprising a substrate having a hard phase and a binder phase, the method comprising forming green powder compacts using powder metallurgical techniques, charging the green powder compacts, placed on one or several trays, in a furnace and sintering the green powder compacts wherein the furnace comprises an insulation package, at least three individually controlled heating elements located inside the insulation package including a vertical heating element, an upper horizontal heating element arranged in an upper part of the furnace, and a lower horizontal heating element arranged in a lower part of the furnace, wherein operating the at least three heating elements such that an average controlled cooling rate from a sintering temperature down to at least a solidification temperature of the binder phase is 0.1-4.0° C./min, and a sintering furnace operable to obtain a controlled cooling rate.
    Type: Application
    Filed: December 19, 2008
    Publication date: January 13, 2011
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Anders Karlsson, Gunilla Anderson, Peter Björkhagen, Per Gustafson, Marco Zwinkels
  • Patent number: 7645316
    Abstract: A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The Co content is 9-<12 at % for general finishing applications and 12-16% for semifinishing applications. The amount of undissolved Ti(C,N) cores must be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The invented alloy is particularly useful for semifinishing of steel and cast iron.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 12, 2010
    Assignee: Sandvik Intellectual Property Aktiebolag
    Inventors: Ulf Rolander, Marco Zwinkels, Gerold Weinl
  • Patent number: 7588621
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 15, 2009
    Assignee: Sandvik Intellectual Property Aktiebolag
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Patent number: 7332122
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: February 19, 2008
    Assignee: Sandvik Intellectual Property AB
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Publication number: 20070289675
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Application
    Filed: August 23, 2007
    Publication date: December 20, 2007
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Publication number: 20070039416
    Abstract: A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The Co content is 9-<12 at % for general finishing applications and 12-16% for semifinishing applications. The amount of undissolved Ti(C,N) cores must be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The invented alloy is particularly useful for semifinishing of steel and cast iron.
    Type: Application
    Filed: October 30, 2006
    Publication date: February 22, 2007
    Inventors: Ulf Rolander, Marco Zwinkels, Gerold Weinl
  • Patent number: 7157044
    Abstract: A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4–7 at % Nb, 3–8 at % W and has a C/(C+N) ratio of 0.50–0.75. The Co content is 9–<12 at % for general finishing applications and 12–16% for semifinishing applications. The amount of undissolved Ti(C,N) cores must be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The invented alloy is particularly useful for semifinishing of steel and cast iron.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: January 2, 2007
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ulf Rolander, Marco Zwinkels, Gerold Weinl
  • Publication number: 20040129111
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Application
    Filed: October 7, 2003
    Publication date: July 8, 2004
    Applicant: SANDVIK AB.
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Publication number: 20040115082
    Abstract: A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The Co content is 9-<12 at % for general finishing applications and 12-16% for semifinishing applications. The amount of undissolved Ti(C,N) cores must be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The invented alloy is particularly useful for semifinishing of steel and cast iron.
    Type: Application
    Filed: October 7, 2003
    Publication date: June 17, 2004
    Applicant: SANDVIK AB
    Inventors: Ulf Rolander, Marco Zwinkels, Gerold Weinl
  • Patent number: 6344170
    Abstract: The present invention relates to a sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in general finishing cutting operations requiring high deformation resistance in combination with relatively high toughness. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: February 5, 2002
    Assignee: Sandvik AB
    Inventors: Ulf Rolander, Gerold Weinl, Anders Piirhonen, Marco Zwinkels
  • Patent number: 6340445
    Abstract: A sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in light finishing cutting operations at high cutting speed. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: January 22, 2002
    Assignee: Sandvik AB
    Inventors: Anders Piirhonen, Marco Zwinkels, Ulf Rolander, Gerold Weinl
  • Patent number: 6325838
    Abstract: The present invention relates to a sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in cutting operations requiring high toughness. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: December 4, 2001
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Anders Piirhonen, Marco Zwinkels, Ulf Rolander
  • Patent number: 6290902
    Abstract: The present invention relates to a method for manufacturing a sintered body of carbonitride alloy with titanium as the main component and cobalt as the binder phase and which does not have any compositional gradients or center porosity concentration after sintering. This is achieved by processing the material in a specific manner to obtain a lower melting point of the liquid phase in the interior of the body than in the surface while balancing the gas atmosphere outside the body with the alloy composition during all stages of the liquid phase sintering.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: September 18, 2001
    Assignee: Sandvik AB
    Inventors: Marco Zwinkels, Ulf Rolander, Gerold Weinl, Anders Piirhonen