Patents by Inventor Marcos Lai

Marcos Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981034
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: May 14, 2024
    Assignees: TELADOC HEALTH, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20240087738
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Patent number: 11919944
    Abstract: The disclosure relates generally to the field of immune binding proteins and method for obtaining immune binding proteins from genomic or other sources. The disclosure also relates to anti-SARS-CoV-2 antibodies that have been obtained from subjects who became immune to this coronavirus, and to methods of using these anti-SARS-CoV-2 antibodies. Methods for neutralizing SARS-CoV-2 are disclosed, as well treatments for SARS-COV-2 using the anti-SARS-CoV-2 antibodies.
    Type: Grant
    Filed: May 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Augmenta Biosciences, Inc.
    Inventors: Christopher J. Emig, Rosanna Man Wah Chau, Payam Shahi, Kim-Xuan Nguyen, Yushuan Lai, Robin Emig, John Beaber, Steven Henry, Marco Antonio Mena
  • Patent number: 11910995
    Abstract: The application relates to the problem of navigating a surgical instrument (at 301, 311) towards a region-of-interest (at 312) in endoscopic surgery when an image (300) provided by the endoscope is obscured at least partly by obscuring matter (at 303), wherein the obscuring matter is a leaking body fluid, debris or smoke caused by ablation. To address this problem, a computer-implemented method is proposed, wherein, upon detecting that the image from the endoscope is at least partly obscured, a second image is determined based on a sequence of historic images and based on the current position and orientation of the endoscope. Furthermore, a virtual image (310) is generated based on the determined second image.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: February 27, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Caifeng Shan, Marco Lai, Robert Johannes Frederik Homan, Drazenko Babic
  • Publication number: 20240041342
    Abstract: An apparatus (and method) is for monitoring blood perfusion. A plurality of photoplethysmography, PPG, signals are acquired indicative of light detected in a region of interest of tissue at a plurality of respective locations within the region. The PPG signals are processed to determine an amplitude and preferably also a phase of each of the plurality of PPG signals, and a blood perfusion level is determined at the region of interest based on the amplitudes and preferably also the phases of the PPG signals.
    Type: Application
    Filed: December 16, 2021
    Publication date: February 8, 2024
    Inventors: Marco LAI, Claudio DICORATO, Frank VERBAKEL, Gerhardus Wilhelmus LUCASSEN, Nico Maris Adriaan DE WILD, Marc Godfriedus Marie NOTTEN
  • Publication number: 20220354418
    Abstract: There is provided an apparatus (100) for detecting tissue inflammation. The apparatus (100) comprises a processor (102) configured to acquire, from at least one sensor (104), a plurality of photoplethysmography, PPG, signals indicative of light detected in a region of tissue at a plurality of respective locations within the region. The processor is also configured to process the acquired plurality of PPG signals to determine an amplitude and a phase of each of the plurality of PPG signals and detect tissue inflammation based on the determined amplitude and phase of each of the plurality of PPG signals.
    Type: Application
    Filed: December 11, 2019
    Publication date: November 10, 2022
    Inventors: Yannyk Parulian Julian BOURQUIN, Caifeng SHAN, Marco LAI
  • Publication number: 20220240759
    Abstract: The application relates to the problem of navigating a surgical instrument (at 301, 311) towards a region-of-interest (at 312) in endoscopic surgery when an image (300) provided by the endoscope is obscured at least partly by obscuring matter (at 303), wherein the obscuring matter is a leaking body fluid, debris or smoke caused by ablation. To address this problem, a computer-implemented method is proposed, wherein, upon detecting that the image from the endoscope is at least partly obscured, a second image is determined based on a sequence of historic images and based on the current position and orientation of the endoscope. Furthermore, a virtual image (310) is generated based on the determined second image.
    Type: Application
    Filed: July 10, 2020
    Publication date: August 4, 2022
    Inventors: Bernardus Hendrikus Wilhelmus HENDRIKS, Caifeng SHAN, Marco LAI, Robert Johannes Frederik HOMAN, Drazenko BABIC
  • Publication number: 20060092621
    Abstract: A tailpipe decoration has a hollow tubular housing, an axle mounted within the housing, and a first and second set of turbine blades. Each set of turbine blades has a hub with a number of radially mounted turbine blades. The first and second sets of turbine blades are mounted on the axle. Housing connectors mounted on the housing connect the housing to a tailpipe when the housing connectors are engaged. The tailpipe decoration can also have a plurality of electric generators, each with a coil portion and a magnet portion, the magnet portion mounted on either the first or second hub and the coil portion mounted on the housing or a hub so that electric current is generated with the rotation of a hub for illuminating LEDs or the like within the housing.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventor: Marcos Lai