Patents by Inventor Marcus A. Rosenthal

Marcus A. Rosenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100024180
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Application
    Filed: July 29, 2007
    Publication date: February 4, 2010
    Applicant: SRI INTERNATIONAL
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Publication number: 20090200501
    Abstract: The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
    Type: Application
    Filed: April 15, 2009
    Publication date: August 13, 2009
    Applicant: SRI INTERNATIONAL
    Inventors: Jonathan R. Heim, Ronald E. Pelrine, Roy David Kornbluh, Joseph S. Eckerle, Marcus Rosenthal, Richard P. Heydt
  • Publication number: 20090184606
    Abstract: The invention describes electroactive polymer devices in both rolled and unrolled configurations. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. An electroactive polymer device converts between electrical and mechanical energy; and, in one embodiment includes a rolled electroactive polymer and one or more electrodes to provide the mechanical/electrical energy conversion. In one embodiment, the electroactive polymer has a non-uniform surface on which an electrode having a non-uniform shape is disposed.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 23, 2009
    Applicant: SRI INTERNATIONAL
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Patent number: 7537197
    Abstract: The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
    Type: Grant
    Filed: July 29, 2007
    Date of Patent: May 26, 2009
    Assignee: SRI International
    Inventors: Jonathan R. Heim, Ronald E. Pelrine, Roy David Kornbluh, Joseph S. Eckerle, Marcus Rosenthal, Richard P. Heydt
  • Publication number: 20080308974
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Application
    Filed: August 19, 2008
    Publication date: December 18, 2008
    Applicant: SRI International
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Patent number: 7436099
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: October 14, 2008
    Assignee: SRI International
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Publication number: 20080245985
    Abstract: The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
    Type: Application
    Filed: July 29, 2007
    Publication date: October 9, 2008
    Applicant: SRI INTERNATIONAL
    Inventors: Jonathan R. Heim, Ronald E. Pelrine, Roy David Kornbluh, Joseph S. Eckerle, Marcus Rosenthal, Richard P. Heydt
  • Publication number: 20080022517
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Application
    Filed: April 3, 2007
    Publication date: January 31, 2008
    Applicant: SRI INTERNATIONAL
    Inventors: Marcus Rosenthal, Qibing Pei, Neville Bonwit
  • Patent number: 7320457
    Abstract: The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 22, 2008
    Assignee: SRI International
    Inventors: Jonathon R. Heim, Ronald E. Pelrine, Roy David Kornbluh, Joseph S. Eckerle, Marcus Rosenthal, Richard P. Heydt
  • Publication number: 20070170822
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Application
    Filed: August 27, 2004
    Publication date: July 26, 2007
    Applicant: SRI International, A California Corporation
    Inventors: Qibing Pei, Ronald Pelrine, Marcus Rosenthal
  • Patent number: 7233097
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: June 19, 2007
    Assignee: SRI International
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Publication number: 20040217671
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Application
    Filed: March 3, 2004
    Publication date: November 4, 2004
    Applicant: SRI International, a California Corporation
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Publication number: 20030214199
    Abstract: The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
    Type: Application
    Filed: March 5, 2003
    Publication date: November 20, 2003
    Applicant: SRI International, a California Corporation
    Inventors: Jonathan R. Heim, Ronald E. Pelrine, Roy David Kornbluh, Joseph S. Eckerle, Marcus Rosenthal, Richard P. Heydt