Patents by Inventor Marcus A. Verschuuren

Marcus A. Verschuuren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629983
    Abstract: The invention relates to an assembly for detecting the presence of a target based on a detection of a resonance associated to surface polaritons, such as long-range surface exciton polaritons (LRSEP). The invention relates to an assembly to be used in connection with a bio-sensor. The assembly comprising a carrier substrate (1) and a sensor layer (2) positioned on the carrier substrate. The sensor layer is of a material having a complex permittivity with an imaginary part being greater than or similar to the real part.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: January 14, 2014
    Assignee: Stichting IMEC Nederland
    Inventors: Manuel Forcales, Jaime Gomez Rivas, Marcus Verschuuren, Vincenzo Giannini
  • Patent number: 8480958
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 9, 2013
    Assignee: Stichting IMEC Nederland
    Inventors: Jaime Gomez Rivas, Ruth W. I. De Boer, Olaf Janssen, Arun Narayanaswamy, Erik M. H. P. Van Dijk, Marcus Verschuuren
  • Patent number: 8462325
    Abstract: The present invention relates to light sensors for measuring light characteristics. In particular, the present invention relates to a light directionality sensor that is capable of measuring light characteristics such as the light direction, light collimation, and light distribution. According to a first aspect of the present invention there is provided a light directionality sensor comprising a photo-sensor (2), comprising a plurality of photo-sensitive elements (3), and a plurality of light-absorbing light selecting structures (1) arranged on the photo-sensor so as to form an array of light-absorbing light selecting structures. In the array of light-absorbing light selecting structures, a succession of at least some of the light-absorbing light selecting structures has varying structural characteristics.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 11, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ties Van Bommel, Eduard J. Meijer, Rifat A. M. Hikmet, Hendrik A. Van Sprang, Marcus A. Verschuuren
  • Publication number: 20120220471
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: JAIME GOMEZ RIVAS, RUTH W.I. DE BOER, OLAF JANSSEN, ARUN NARAYANASWAMY, ERIK M.H.P. VAN DIJK, MARCUS VERSCHUUREN
  • Publication number: 20110242526
    Abstract: The present invention relates to light sensors for measuring light characteristics. In particular, the present invention relates to a light directionality sensor that is capable of measuring light characteristics such as the light direction, light collimation, and light distribution. According to a first aspect of the present invention there is provided a light directionality sensor comprising a photo-sensor (2), comprising a plurality of photo-sensitive elements (3), and a plurality of light-absorbing light selecting structures (1) arranged on the photo-sensor so as to form an array of light-absorbing light selecting structures. In the array of light-absorbing light selecting structures, a succession of at least some of the light-absorbing light selecting structures has varying structural characteristics.
    Type: Application
    Filed: October 6, 2009
    Publication date: October 6, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ties Van Bommel, Eduard J. Meijer, Rifat A. M. Hikmet, Hendrik A. Van Sprang, Marcus A. Verschuuren
  • Publication number: 20110222066
    Abstract: The invention relates to an assembly for detecting the presence of a target based on a detection of a resonance associated to surface polaritons, such as long-range surface exciton polaritons (LRSEP). The invention relates to an assembly to be used in connection with a bio-sensor. The assembly comprising a carrier substrate (1) and a sensor layer (2) positioned on the carrier substrate. The sensor layer is of a material having a complex permittivity with an imaginary part being greater than or similar to the real part.
    Type: Application
    Filed: September 24, 2009
    Publication date: September 15, 2011
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: Manuel Forcales, Jaime Gomez Rivas, Marcus Verschuuren, Vincenzo Giannini
  • Publication number: 20110170103
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Application
    Filed: December 10, 2010
    Publication date: July 14, 2011
    Applicant: Stichting IMEC Nederland
    Inventors: Jaime Gomez Rivas, Ruth W.I. De Boer, Olaf Janssen, Arun Narayanaswamy, Erik M.H.P. Van Dijk, Marcus Verschuuren
  • Publication number: 20100096562
    Abstract: There is provided a wave guide comprising: a wave guiding medium, having an index of refraction and provided between first and second wave propagating planar structures at least said first planar structure comprises a plurality of slitted-apertures defining a length axis of the first reflective structure; the slitted apertures constructed and arranged to reflect a R-polarized component of said radiation oriented parallel to said length axis; and wherein said first planar structure is arranged between said wave guiding medium and an adjacent medium having an index of refraction equal or larger than the wave guiding medium. In one aspect of the invention, a waveguide is proposed to limit an excitation region wherein luminophores are excited; substantially independent from the surrounding media of the waveguide. Preferentially, the waveguide is used in a luminescence sensor.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 22, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Derk J.W. Klunder, Maarten M.J.W. Van Herpen, Marcus A. Verschuuren
  • Publication number: 20100055475
    Abstract: The invention relates to a method for providing a utensil with a decoration by means of an optical interference grating. The utensil is provided with a sol-gel precursor which is embossed with a flexible stamp to create an optical interference grating. The interference grating can be provided with a second precursor of a material with an index of refraction higher than that of the sol-gel layer, and provided with a transparent, non-scattering topcoat. The invention further relates to an appliance, e.g. an iron or a shaver, coated with an organosilane layer provided with an optical interference grating.
    Type: Application
    Filed: June 27, 2006
    Publication date: March 4, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marcus Verschuuren, Martinus Petrus Joseph Peeters, Peter Johannes Werkman, Jenfry Surianto
  • Publication number: 20060267475
    Abstract: A field emission device (1) may be used for emitting electrons in, for example, a field emission display (FED). Field emission tips (40) are used for the emitting of electrons in the field emission device (1). In operation of the field emission device (1) a voltage is applied between a first electrode (4) having electrical contact with the field emission tip (40) and a second electrode (34) to make the field emission tip (40) emit electrons. To form a field emission tip (40) a layer of liquid material is applied on a substrate (2) provided with the first electrode (4). The layer of liquid material is embossed with a patterned stamp and subsequently cured to form a field emission tip structure (20). A conductive film (38) is applied on the field emission tip structure (20) to form a field emission tip (40) that has electrical contact with the first electrode (4).
    Type: Application
    Filed: April 26, 2004
    Publication date: November 30, 2006
    Inventors: Hugo Visser, Marcus Verschuuren, Teunis Vink
  • Publication number: 20060075849
    Abstract: The invention pertains to a composition comprising silver metal particles and an additive, characterized in that the additive is a metal salt or a mixture of metal salts wherein the metal is yttrium or a metal of group 2 of the Periodic System, and wherein the composition comprises <2 atom % of the metal. Preferably, the salt is a salt of magnesium acetate. The compositions can be used to make temperature-resistant electrically-conductive silver-containing layers, for instance for use in AMLCD.
    Type: Application
    Filed: January 20, 2004
    Publication date: April 13, 2006
    Inventors: Marcus Verschuuren, Martinus Peeters
  • Publication number: 20060055310
    Abstract: A field emission device (100) is provided with a cathode electrode (120) and a gate electrode (140). Between these electrodes, a patterned dielectric layer (130) is provided. According to the invention, this dielectric layer (130) is manufactured from a liquid precursor material (131) which is patterned by means of a liquid embossing step, i.e. engaging a patterned stamp (150) with the liquid material (131). After removing the stamp (150), the liquid material is cured to form the patterned dielectric layer (130). Preferably, in a subsequent manufacturing step, the cathode electrode (120) or the gate electrode (140) is formed over the patterned dielectric layer (130) in a self-aligned way.
    Type: Application
    Filed: November 12, 2003
    Publication date: March 16, 2006
    Inventors: Teunis Vink, Marcus Verschuuren, Murray Gillies