Patents by Inventor Marcus Culmsee

Marcus Culmsee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653543
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: May 16, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
  • Publication number: 20150137309
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 21, 2015
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
  • Patent number: 8936995
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: January 20, 2015
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
  • Patent number: 7544553
    Abstract: To form a semiconductor device, a silicon (e.g., polysilicon) gate layer is formed over a gate dielectric and a sacrificial layer (preferably titanium nitride) is formed over the silicon gate layer. The silicon gate layer and the sacrificial layer are patterned to form a gate structure. A spacer, such as an oxide sidewall spacer and a nitride sidewall spacer, is formed adjacent the sidewall of the gate structure. The semiconductor body is then doped to form a source region and a drain region that are self-aligned to the spacers. The sacrificial layer can then be removed selectively with respect to the oxide sidewall spacer, the nitride sidewall spacer and the silicon gate. A metal layer (e.g., nickel) is formed over the source region, the drain region and the silicon gate and reacted with these regions to form a silicided source contact, a silicided drain contact and a silicided gate.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 9, 2009
    Assignee: Infineon Technologies AG
    Inventors: Marcus Culmsee, Hermann Wendt, Lothar Doni
  • Patent number: 7364975
    Abstract: Methods of fabricating semiconductor devices are disclosed. In a preferred embodiment, a method of fabricating a semiconductor device includes providing a workpiece including a plurality of active area regions defined therein, and forming at least one trench in the workpiece between at least two of the plurality of active area regions. A first insulating material is deposited over the plurality of active area regions and the at least one trench, partially filling the at least one trench with the first insulating material and forming peaks of the first insulating material over the plurality of active area regions. A masking material is formed over the first insulating material in the at least one trench, leaving the peaks of the first insulating material over the plurality of active area regions completely exposed. At least the peaks of the first insulating material are removed from over the plurality of active area regions.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: April 29, 2008
    Assignee: Infineon Technologies AG
    Inventors: Marcus Culmsee, Frank Weber, Josef Maynollo
  • Publication number: 20080020534
    Abstract: Methods of fabricating semiconductor devices are disclosed. In a preferred embodiment, a method of fabricating a semiconductor device includes providing a workpiece including a plurality of active area regions defined therein, and forming at least one trench in the workpiece between at least two of the plurality of active area regions. A first insulating material is deposited over the plurality of active area regions and the at least one trench, partially filling the at least one trench with the first insulating material and forming peaks of the first insulating material over the plurality of active area regions. A masking material is formed over the first insulating material in the at least one trench, leaving the peaks of the first insulating material over the plurality of active area regions completely exposed. At least the peaks of the first insulating material are removed from over the plurality of active area regions.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Inventors: Marcus Culmsee, Frank Weber, Josef Maynollo
  • Publication number: 20080011322
    Abstract: Cleaning systems and methods are provided. A preferred embodiment comprises a method of cleaning that includes providing a device and disposing a cleaning fluid on the device. The cleaning fluid includes a first component saturated with a second component. The first component comprises a liquid, and the second component comprises a material that is releasable from the cleaning fluid as a gas. The second component is caused to be released from the cleaning fluid while the cleaning fluid is disposed on the device.
    Type: Application
    Filed: July 11, 2006
    Publication date: January 17, 2008
    Inventors: Frank Weber, Marcus Culmsee
  • Publication number: 20070205489
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 6, 2007
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Hong, Roland Hampp
  • Publication number: 20070087565
    Abstract: Methods of forming isolation regions for semiconductor devices and structures thereof are disclosed. A workpiece having a top surface is provided, a chemical mechanical polish (CMP) stop layer is formed over the workpiece, and a sacrificial material is formed over the CMP stop layer. The sacrificial material, the CMP stop layer, and the workpiece are patterned with a trench for an isolation region. The isolation region is filled with an insulating material, and a CMP process is used to remove the insulating material from over the top surface of the CMP stop layer. The sacrificial material is removed during the CMP process.
    Type: Application
    Filed: October 18, 2005
    Publication date: April 19, 2007
    Inventors: Marcus Culmsee, Tae Hoon Lee
  • Publication number: 20060228844
    Abstract: To form a semiconductor device, a silicon (e.g., polysilicon) gate layer is formed over a gate dielectric and a sacrificial layer (preferably titanium nitride) is formed over the silicon gate layer. The silicon gate layer and the sacrificial layer are patterned to form a gate structure. A spacer, such as an oxide sidewall spacer and a nitride sidewall spacer, is formed adjacent the sidewall of the gate structure. The semiconductor body is then doped to form a source region and a drain region that are self-aligned to the spacers. The sacrificial layer can then be removed selectively with respect to the oxide sidewall spacer, the nitride sidewall spacer and the silicon gate. A metal layer (e.g., nickel) is formed over the source region, the drain region and the silicon gate and reacted with these regions to form a silicided source contact, a silicided drain contact and a silicided gate.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 12, 2006
    Inventors: Marcus Culmsee, Hermann Wendt, Lothar Doni