Patents by Inventor Marcus D. Collins
Marcus D. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240201134Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: ApplicationFiled: January 18, 2024Publication date: June 20, 2024Applicant: University of WashingtonInventors: Jens H. Gundlach, Ian M. Derrington, Marcus D. Collins
-
Patent number: 11913905Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: GrantFiled: November 24, 2021Date of Patent: February 27, 2024Assignee: University of WashingtonInventors: Jens H. Gundlach, Ian M. Derrington, Marcus D. Collins
-
Publication number: 20220164126Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: ApplicationFiled: November 24, 2021Publication date: May 26, 2022Applicant: University of WashingtonInventors: Jens H. Gundlach, Ian M. Derrington, Marcus D. Collins
-
Patent number: 11187675Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: GrantFiled: February 14, 2017Date of Patent: November 30, 2021Assignee: University of WashingtonInventors: Jens H. Gundlach, Ian M. Derrington, Marcus D. Collins
-
Publication number: 20170227494Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: ApplicationFiled: February 14, 2017Publication date: August 10, 2017Applicant: University of WashingtonInventors: Jens H. Gundlach, Ian M. Derrington, Marcus D. Collins
-
Patent number: 9588079Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: GrantFiled: August 22, 2012Date of Patent: March 7, 2017Assignee: UNIVERSITY OF WASHINGTONInventors: Jens Gundlach, Ian M. Derrington, Marcus D. Collins
-
Publication number: 20130146457Abstract: Provided herein are methods and systems pertaining to sequencing units of analytes using nanopores. In general, arresting constructs are used to modify an analyte such that the modified analyte pauses in the opening of a nanopore. During such a pause, an ion current level is obtained that corresponds to a unit of the analyte. After altering the modified analyte such that the modified analyte advances through the opening, another arresting construct again pauses the analyte, allowing for a second ion current level to be obtained that represents a second unit of the analyte. This process may be repeated until each unit of the analyte is sequenced. Systems for performing such methods are also disclosed.Type: ApplicationFiled: August 22, 2012Publication date: June 13, 2013Applicant: UNIVERSITY OF WASHINGTONInventors: Jens Gundlach, Ian M. Derrington, Marcus D. Collins