Patents by Inventor Marcus DÜLK

Marcus DÜLK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118496
    Abstract: A light source module (100) with integrated wavemeter components (460, 494, 495) for stabilizing the output power and wavelength of a superluminescent diode or other broadband semiconductor light source (121) outputting a broadband output beam. A portion of the source output beam is directed to an optical edge filter (460) with a cross-over wavelength lying within the bandwidth of the output beam. The edge filter (460) divides the light it receives into a short-wavelength component and a long-wavelength component. These two components are then directed onto respective photodetectors (494, 495) that output respective signals to a wavemeter controller. The controller adjusts the drive current and/or temperature of the source to maintain the mean wavelength of the source's output beam at a set constant value according to a control parameter determined from a combination of the photodetector signals such as their ratio or the ratio between their difference and sum.
    Type: Application
    Filed: September 22, 2023
    Publication date: April 11, 2024
    Applicant: EXALOS AG
    Inventor: Marcus DÜLK
  • Publication number: 20240094613
    Abstract: A light source module comprising a plurality of semiconductor emitters, each configured to emit a beam at a different peak emission wavelength. Each beam is divergent with a more divergent, fast axis and a less divergent, slow axis. First single-axis focusing elements focus the beams from respective emitters in one of the fast and slow axis while the beams remain divergent in the other of the fast and slow axis. A beam combiner based on dichroic mirrors is arranged to bring the beams from the individual first single-axis focusing elements into a common optical axis. A common second single-axis focusing element is arranged to focus the combined beams output from the beam combiner in the other of the fast and slow axis which are then output from the light source module.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 21, 2024
    Applicant: EXALOS AG
    Inventors: Marcus DÜLK, Nikolay PRIMEROV
  • Patent number: 11918376
    Abstract: A module accommodates multiple superluminescent light emitting diodes, SLEDs, 12r, 12g and 12b. The SLEDs are arranged in an enclosure and output respective light beams to propagate into free space within the enclosure. The individual light beams from the SLED sources are combined into a single beam path within the enclosure using beam combiners 40r-g, 40rg-b. Each beam combiner is realized as a planar optical element, the back side of which is arranged to receive a SLED beam and route it through the optical element to the front side where it is combined with another SLED beam that is incident on and reflected by the front side. The free-space propagating combined beam is output from the module via an optical fiber 42 (or through a window).
    Type: Grant
    Filed: September 6, 2021
    Date of Patent: March 5, 2024
    Assignee: EXALOS AG
    Inventors: Marcus Dülk, Jean Dahdah, Stefan Gloor, Nikolay Primerov, Christian Velez
  • Patent number: 11791437
    Abstract: An amplified spontaneous emission, ASE, source device combining a superluminescent light emitting diode, SLED, with a semiconductor optical amplifier, SOA, the SLED and SOA being arranged in series so that the SLED acts as a seed and the SOA acts as a broadband amplifier for the SLED output. Both SLED and SOA have a structure made up of a succession of epitaxial semiconductor layers which form a waveguide comprising a core of active region layers and surrounding cladding layers. The SLED and SOA confinement factors of the SLED and SOA, wherein confinement factor is the percentage of the optical mode power in the active region layers, is designed so that the SLED confinement factor is greater than that of the SOA by at least 20%. This allow higher power outputs, because the SLED power limits imposed by the onset of non-linear effects and catastrophic optical damage can be circumvented.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: October 17, 2023
    Assignee: EXALOS AG
    Inventors: Marcus Dülk, Nicolai Matuschek
  • Publication number: 20230261444
    Abstract: A monolithic edge-emitting semiconductor diode array chip (100) comprises a one-dimensional array (70) of diode emitters (50), such as laser diodes, superluminescent diodes or semiconductor optical amplifiers. Semiconductor layers are arranged on a conductive substrate (1) and include active region layers (14) arranged between upper and lower cladding layers (12, 16) and separation layers (4, 5) arranged between the conductive substrate (1) and the lower cladding layer (16). The diode emitters (50) are formed by respective ridges (9) that are separated by trenches (25) which are sufficiently deep to penetrate into the separation layers (4, 5). Each diode (50) has its own upper and lower contacts (22, 24) that allow each diode (50) to be independently drivable with a current source driver circuit connected to push a modulated push current through its associated diode and/or a current sink connected to extract a modulated pull current through its associated diode.
    Type: Application
    Filed: December 9, 2022
    Publication date: August 17, 2023
    Applicant: EXALOS AG
    Inventors: Marco ROSSETTI, Marcus DÜLK, Antonino Francesco CASTIGLIA, Marco MALINVERNI, Christian VELEZ
  • Publication number: 20210396922
    Abstract: A module accommodates multiple superluminescent light emitting diodes, SLEDs, 12r, 12g and 12b. The SLEDs are arranged in an enclosure and output respective light beams to propagate into free space within the enclosure. The individual light beams from the SLED sources are combined into a single beam path within the enclosure using beam combiners 40r-g, 40rg-b. Each beam combiner is realized as a planar optical element, the back side of which is arranged to receive a SLED beam and route it through the optical element to the front side where it is combined with another SLED beam that is incident on and reflected by the front side. The free-space propagating combined beam is output from the module via an optical fiber 42 (or through a window).
    Type: Application
    Filed: September 6, 2021
    Publication date: December 23, 2021
    Applicant: EXALOS AG
    Inventors: Marcus DÜLK, Jean DAHDAH, Stefan GLOOR, Nikolay PRIMEROV, Christian VELEZ
  • Patent number: 11158758
    Abstract: Superluminescent light emitting diode, SLED, devices and modules are provided. A multi-wavelength SLED device is fabricated by sequentially depositing adjacent epitaxial stacks onto a substrate to form a monolithic chip structure. Each epitaxial stack includes n-type layers, active layers and p-type layers. A ridge is formed in the p-type layers between the end facets of the chip to induce a waveguiding region in the active layers. Different ones of the epitaxial stacks emit at different wavelength ranges. A module is made by packaging one of the above SLED devices with another SLED device, with one inverted relative to the other to form a triangle of emitters as viewed end on, for example a triangle of red, green and blue emitters. The SLED devices and modules may find use in projection, endoscopic, fundus imaging and optical coherence tomography systems.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 26, 2021
    Assignee: EXALOS AG
    Inventors: Antonino Francesco Castiglia, Marco Rossetti, Marco Malinverni, Marcus Dülk, Christian Velez
  • Patent number: 11131795
    Abstract: A module accommodates multiple superluminescent light emitting diodes, SLEDs, 12r, 12g and 12b. The SLEDs are arranged in an enclosure and output respective light beams to propagate into free space within the enclosure. The individual light beams from the SLED sources are combined into a single beam path within the enclosure using beam combiners 40r-g, 40rg-b. Each beam combiner is realized as a planar optical element, the back side of which is arranged to receive a SLED beam and route it through the optical element to the front side where it is combined with another SLED beam that is incident on and reflected by the front side. The free-space propagating combined beam is output from the module via an optical fiber 42 (or through a window).
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 28, 2021
    Assignee: EXALOS AG
    Inventors: Marcus Dülk, Jean Dahdah, Stefan Gloor, Nikolay Primerov, Christian Velez
  • Patent number: 11086133
    Abstract: A source module suitable for an optical coherence tomography system. The source module comprises a source operable to emit a divergent, source output beam either of circular cross-section (e.g. as output by a vertical cavity surface emitting laser) or of elliptical cross-section (e.g. as output by an edge-emitting semiconductor laser or diode). Collimation optics are provided to convert the source output beam into a non-divergent, collimated beam of elliptical cross-section having a major axis and a minor axis. A cylindrical lens is arranged with its plano axis aligned with the major axis of the elliptical collimated beam and its power axis aligned with the minor axis of the elliptical collimated beam so as to form a line focus extending along the major axis of the elliptical collimated beam.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: August 10, 2021
    Assignee: EXALOS AG
    Inventors: Laurin Ginner, Rainer Leitgeb, Marcus Dülk
  • Patent number: 10809460
    Abstract: A depolarizer for a broadband optical source to split the source beam by power, not by polarization state, and route the components into respective light paths. A polarization rotator arranged in one of the light paths rotates the polarization state of that beam component to make it orthogonal to that of the other. The components are then recombined by a combiner and output. A variable optical attenuator is arranged in one of the light paths, which during operation is adjusted by a controller to maintain power equalization between the light paths and hence depolarization performance. The controller receives power measurements from the light paths and from after the combiner via respective sensors. With this feedforward design reminiscent of a Mach-Zehnder interferometer the light from a light source which generates highly polarized light can be depolarized in theory with zero insertion loss and in practice with losses of about 1 dB.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: October 20, 2020
    Assignee: EXALOS AG
    Inventors: Marcus Dülk, Philipp Vorreau
  • Publication number: 20200251610
    Abstract: An amplified stimulated emission, ASE, source device combining a superluminescent light emitting diode, SLED, with a semiconductor optical amplifier, SOA, the SLED and SOA being arranged in series so that the SLED acts as a seed and the SOA acts as a broadband amplifier for the SLED output. Both SLED and SOA have a structure made up of a succession of epitaxial semiconductor layers which form a waveguide comprising a core of active region layers and surrounding cladding layers. The SLED and SOA confinement factors of the SLED and SOA, wherein confinement factor is the percentage of the optical mode power in the active region layers, is designed so that the SLED confinement factor is greater than that of the SOA by at least 20%. This allow higher power outputs, because the SLED power limits imposed by the onset of non-linear effects and catastrophic optical damage can be circumvented.
    Type: Application
    Filed: December 31, 2019
    Publication date: August 6, 2020
    Applicant: EXALOS AG
    Inventor: Marcus DÜLK
  • Publication number: 20200201058
    Abstract: A source module suitable for an optical coherence tomography system. The source module comprises a source operable to emit a divergent, source output beam either of circular cross-section (e.g. as output by a vertical cavity surface emitting laser) or of elliptical cross-section (e.g. as output by an edge-emitting semiconductor laser or diode). Collimation optics are provided to convert the source output beam into a non-divergent, collimated beam of elliptical cross-section having a major axis and a minor axis. A cylindrical lens is arranged with its plano axis aligned with the major axis of the elliptical collimated beam and its power axis aligned with the minor axis of the elliptical collimated beam so as to form a line focus extending along the major axis of the elliptical collimated beam.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 25, 2020
    Applicant: EXALOS AG
    Inventors: Laurin GINNER, Rainer LEITGEB, Marcus DÜLK
  • Publication number: 20200192017
    Abstract: A module accommodates multiple superluminescent light emitting diodes, SLEDs, 12r, 12g and 12b. The SLEDs are arranged in an enclosure and output respective light beams to propagate into free space within the enclosure. The individual light beams from the SLED sources are combined into a single beam path within the enclosure using beam combiners 40r-g, 40rg-b. Each beam combiner is realized as a planar optical element, the back side of which is arranged to receive a SLED beam and route it through the optical element to the front side where it is combined with another SLED beam that is incident on and reflected by the front side. The free-space propagating combined beam is output from the module via an optical fiber 42 (or through a window).
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Applicant: EXALOS AG
    Inventors: Marcus DÜLK, Jean DAHDAH, Stefan GLOOR, Nikolay PRIMEROV, Christian VELEZ
  • Publication number: 20200185884
    Abstract: Superluminescent light emitting diode, SLED, devices and modules are provided. A multi-wavelength SLED device is fabricated by sequentially depositing adjacent epitaxial stacks onto a substrate to form a monolithic chip structure. Each epitaxial stack includes n-type layers, active layers and p-type layers. A ridge is formed in the p-type layers between the end facets of the chip to induce a waveguiding region in the active layers. Different ones of the epitaxial stacks emit at different wavelength ranges. A module is made by packaging one of the above SLED devices with another SLED device, with one inverted relative to the other to form a triangle of emitters as viewed end on, for example a triangle of red, green and blue emitters. The SLED devices and modules may find use in projection, endoscopic, fundus imaging and optical coherence tomography systems.
    Type: Application
    Filed: July 15, 2019
    Publication date: June 11, 2020
    Applicant: EXALOS AG
    Inventors: Antonino Francesco Castiglia, Marco Rossetti, Marco Malinverni, Marcus Dülk, Christian Velez
  • Publication number: 20190079308
    Abstract: A depolarizer for a broadband optical source to split the source beam by power, not by polarization state, and route the components into respective light paths. A polarization rotator arranged in one of the light paths rotates the polarization state of that beam component to make it orthogonal to that of the other. The components are then recombined by a combiner and output. A variable optical attenuator is arranged in one of the light paths, which during operation is adjusted by a controller to maintain power equalization between the light paths and hence depolarization performance. The controller receives power measurements from the light paths and from after the combiner via respective sensors. With this feedforward design reminiscent of a Mach-Zehnder interferometer the light from a light source which generates highly polarized light can be depolarized in theory with zero insertion loss and in practice with losses of about 1 dB.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 14, 2019
    Applicant: EXALOS AG
    Inventors: Marcus DÜLK, Philipp VORREAU
  • Patent number: 10193310
    Abstract: A low power, side-emitting semiconductor laser diode is provided. The laser diode is formed from a semiconductor heterostructure having an active layer sandwiched between an n-type layer and a p-type layer, wherein the active layer forms a gain medium of width W. Front and back reflectors of reflectivity Rf and Rb are arranged on opposing side facets of the semiconductor heterostructure part to form a cavity of length L containing at least a part of the active layer which thus forms the gain medium for the laser diode, the gain medium having an internal loss ?i. To achieve stable, low power operation close to threshold, the laser diode is configured with the following parameter combination: width W: 1 ?m?W?2 ?m; cavity length L: 100 ?m?L?600 ?m; internal loss ?i: 0 cm?1??i?30 cm?1; back reflectivity Rb: 100?Rb?80%; and front reflectivity Rf: 100?Rf?60%.
    Type: Grant
    Filed: October 2, 2016
    Date of Patent: January 29, 2019
    Assignee: EXALOS AG
    Inventors: Antonino Francesco Castiglia, Marco Rossetti, Marcus Dülk, Christian Velez
  • Publication number: 20180083422
    Abstract: A low power, side-emitting semiconductor laser diode is provided. The laser diode is formed from a semiconductor heterostructure having an active layer sandwiched between an n-type layer and a p-type layer, wherein the active layer forms a gain medium of width W. Front and back reflectors of reflectivity Rf and Rb are arranged on opposing side facets of the semiconductor heterostructure part to form a cavity of length L containing at least a part of the active layer which thus forms the gain medium for the laser diode, the gain medium having an internal loss ?i. To achieve stable, low power operation close to threshold, the laser diode is configured with the following parameter combination: width W: 1 ?m?W?2 ?m; cavity length L: 100 ?m?L?600 ?m; internal loss ?i: 0 cm?1?i?30 cm?1; back reflectivity Rb: 100?Rb?80%; and front reflectivity Rf: 100?Rf?60%.
    Type: Application
    Filed: October 2, 2016
    Publication date: March 22, 2018
    Applicant: EXALOS AG
    Inventors: Antonino Francesco CASTIGLIA, Marco ROSSETTI, Marcus DÜLK, Christian VELEZ
  • Patent number: 8971360
    Abstract: An optical module includes a light source. The light source can be a swept wavelength light source, and optical module includes a wavemeter. The wavemeter includes a wavemeter tap capable of directing a wavemeter portion of light produced by the light source away from a main beam, a wavelength selective filter arranged to receive the wavemeter portion, a first wavemeter detector arranged to measure a transmitted radiation intensity of radiation transmitted through the filter, and a second wavemeter detector arranged to measure a non-transmitted radiation intensity of radiation not transmitted through but reflected by the filter. In addition, an optical coherence tomography apparatus includes the optical module.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 3, 2015
    Assignee: Exalos AG
    Inventors: Jan Lewandowski, Marcus Duelk, Christian Velez
  • Publication number: 20140098829
    Abstract: An optical module includes a light source. The light source can be a swept wavelength light source, and optical module includes a wavemeter. The wavemeter includes a wavemeter tap capable of directing a wavemeter portion of light produced by the light source away from a main beam, a wavelength selective filter arranged to receive the wavemeter portion, a first wavemeter detector arranged to measure a transmitted radiation intensity of radiation transmitted through the filter, and a second wavemeter detector arranged to measure a non-transmitted radiation intensity of radiation not transmitted through but reflected by the filter. In addition, an optical coherence tomography apparatus includes the optical module.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 10, 2014
    Applicant: EXALOS AG
    Inventors: Jan Lewandowski, Marcus Duelk, Christian Velez
  • Patent number: 8625650
    Abstract: A swept wavelength light source is provided, the light source includes a semiconductor gain device operable to provide amplification, an optical retarding device, the retarding device having a block of material, a beam path with a well-defined beam path length being defined for light within the block of material produced by the gain device, a wavelength selector, and the gain device, the retarding device and wavelength selector being mutually arranged on the base so that a resonator is established for light portions emitted by the gain device and selected by wavelength selector; this does not exclude the presence of further elements contributing to the resonator, such as additional mirrors (including resonator end mirrors), lenses, polarization selective elements, other passive optical components, etc.; wherein the beam path in the retarding device is a part of a beam path of the resonator.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: January 7, 2014
    Assignee: Exalos AG
    Inventors: Jan Lewandowski, Marcus Duelk, Christian Velez