Patents by Inventor Marcus Gois

Marcus Gois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10264081
    Abstract: Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation based on contextual indicators. In an exemplary embodiment, email recipient recommendations may be suggested based on contextual signals, e.g., project names, body text, existing recipients, current date and time, etc. In an aspect, a plurality of properties including ranked key phrases are associated with profiles corresponding to personal entities. Aggregated profiles are analyzed using first- and second-layer processing techniques. The recommendations may be provided to the user reactively, e.g., in response to a specific query by the user to the people recommendation system, or proactively, e.g., based on the context of what the user is currently working on, in the absence of a specific query by the user.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: April 16, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Chenlei Guo, Jianfeng Gao, Xinying Song, Byungki Byun, Yelong Shen, Ye-Yi Wang, Brian D. Remick, Edward Thiele, Mohammed Aatif Ali, Marcus Gois, Xiaodong He, Jianshu Chen, Divya Jetley, Stephen Friesen
  • Patent number: 10042961
    Abstract: Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation. In an exemplary embodiment, a plurality of conversation boxes associated with communications between a user and target recipients, or between other users and recipients, are collected and stored as user history. During a training phase, the user history is used to train encoder and decoder blocks in a de-noising auto-encoder model. During a prediction phase, the trained encoder and decoder are used to predict one or more recipients for a current conversation box composed by the user, based on contextual and other signals extracted from the current conversation box. The predicted recipients are ranked using a scoring function, and the top-ranked individuals or entities may be recommended to the user.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: August 7, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yelong Shen, Xinying Song, Jianfeng Gao, Chenlei Guo, Byungki Byun, Ye-Yi Wang, Brian D. Remick, Edward Thiele, Mohammed Aatif Ali, Marcus Gois, Yang Zou, Mariana Stepp, Divya Jetley, Stephen Friesen
  • Publication number: 20160321283
    Abstract: Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation. In an exemplary embodiment, a plurality of conversation boxes associated with communications between a user and target recipients, or between other users and recipients, are collected and stored as user history. During a training phase, the user history is used to train encoder and decoder blocks in a de-noising auto-encoder model. During a prediction phase, the trained encoder and decoder are used to predict one or more recipients for a current conversation box composed by the user, based on contextual and other signals extracted from the current conversation box. The predicted recipients are ranked using a scoring function, and the top-ranked individuals or entities may be recommended to the user.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 3, 2016
    Inventors: Yelong Shen, Xinying Song, Jianfeng Gao, Chenlei Guo, Byungki Byun, Ye-Yi Wang, Brian D. Remick, Edward Thiele, Mohammed Aatif Ali, Marcus Gois, Yang Zou, Mariana Stepp, Divya Jetley, Stephen Friesen
  • Publication number: 20160323398
    Abstract: Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation based on contextual indicators. In an exemplary embodiment, email recipient recommendations may be suggested based on contextual signals, e.g., project names, body text, existing recipients, current date and time, etc. In an aspect, a plurality of properties including ranked key phrases are associated with profiles corresponding to personal entities. Aggregated profiles are analyzed using first- and second-layer processing techniques. The recommendations may be provided to the user reactively, e.g., in response to a specific query by the user to the people recommendation system, or proactively, e.g., based on the context of what the user is currently working on, in the absence of a specific query by the user.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 3, 2016
    Inventors: Chenlei Guo, Jianfeng Gao, Xinying Song, Byungki Byun, Yelong Shen, Ye-Yi Wang, Brian D. Remick, Edward Thiele, Mohammed Aatif Ali, Marcus Gois, Xiaodong He, Jianshu Chen, Divya Jetley, Stephen Friesen