Patents by Inventor Marcus Palmer da Silva

Marcus Palmer da Silva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146307
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Application
    Filed: April 26, 2023
    Publication date: May 2, 2024
    Applicant: Rigetti & Co, LLC
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Patent number: 11960972
    Abstract: In a general aspect, input data for a computer process are preprocessed by a preprocessor unit that includes a quantum processor. In some aspects, a preprocessor unit obtains input data for a computer process that is configured to run on a computer processing unit. Randomized parameter values are computed for variable parameters of a quantum logic circuit based on the input data. A classical processor in the preprocessor unit computes the randomized parameter values from the input data and a set of random numbers. A quantum processor in the preprocessor unit produces quantum processor output data by executing the quantum logic circuit having the randomized parameter values assigned to the variable parameters. Preprocessed data generated based on the quantum processor output data are then provided as the input for the computer process configured to run on the computer processing unit.
    Type: Grant
    Filed: January 6, 2023
    Date of Patent: April 16, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Johannes Sebastian Otterbach, Christopher Mogan Wilson, Marcus Palmer da Silva, Nikolas Anton Tezak, Gavin Earl Crooks
  • Patent number: 11900219
    Abstract: In a general aspect, a gate is formed for a quantum processor. In some implementations, an arbitrary program is received. The arbitrary program includes a first sequence of quantum logic gates, which includes a parametric XY gate. A native gate set is identified, which includes a set of quantum logic gates associated with a quantum processing unit. A second sequence of quantum logic gates corresponding to the parametric XY gate is identified, which includes a parametric quantum logic gate. Each of the quantum logic gates in the second sequence is selected from the native gate set. A native program is generated. The native program includes a third sequence of quantum logic gates. The third sequence of quantum logic gates corresponds to the first sequence of quantum logic gates and includes the second sequence of quantum logic gates. The native program is provided for execution by the quantum processing unit.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: February 13, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Colm Andrew Ryan, Eric Christopher Peterson, Marcus Palmer da Silva, Michael Justin Gerchick Scheer, Deanna Margo Abrams
  • Publication number: 20230368061
    Abstract: In a general aspect, a quantum streaming kernel processes a data stream. In some aspects, an input stream of data is converted to an output stream of data by repeatedly receiving new portions of the input stream; encoding each new portion into an internal quantum state of a quantum processor; measuring a first part of the internal quantum state while maintaining coherence of a second part of the internal quantum state; and producing the output stream of data based on the measurements. In some cases, a history of the input stream is preserved by the coherence of the internal quantum state, and the measurements contain information based on the history of the input stream.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 16, 2023
    Applicant: Rigetti & Co, LLC
    Inventors: Nikolas Anton Tezak, Marcus Palmer da Silva, Robert Stanley Smith, Christopher Mogan Wilson
  • Patent number: 11694108
    Abstract: In a general aspect, a quantum streaming kernel processes a data stream. In some aspects, an input stream of data is converted to an output stream of data by repeatedly receiving new portions of the input stream; encoding each new portion into an internal quantum state of a quantum processor; measuring a first part of the internal quantum state while maintaining coherence of a second part of the internal quantum state; and producing the output stream of data based on the measurements. In some cases, a history of the input stream is preserved by the coherence of the internal quantum state, and the measurements contain information based on the history of the input stream.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: July 4, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Nikolas Anton Tezak, Marcus Palmer da Silva, Robert Stanley Smith, Christopher Mogan Wilson
  • Publication number: 20230196172
    Abstract: A method of probabilistically canceling noise in a measurement-based quantum device includes obtaining a sequence of ideal measurements included within a quantum algorithm and selecting a sequence of noisy measurements for emulating the sequence of ideal measurements. Each of the noisy measurements in the selected sequence approximates a corresponding one of the ideal measurements and is adjusted by a quantum correction, where the noisy measurements are selected according to a carefully chosen distribution to cancel known features of noise in those same noisy measurements in the sequence.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Adam Edward PAETZNICK, Marcus Palmer da SILVA, Mohamed Ayman EL MANDOUH
  • Patent number: 11677402
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: June 13, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Patent number: 11562284
    Abstract: In a general aspect, a gate is formed for a quantum processor. In some implementations, an arbitrary program is received. The arbitrary program includes a first sequence of quantum logic gates, which includes a parametric XY gate. A native gate set is identified, which includes a set of quantum logic gates associated with a quantum processing unit. A second sequence of quantum logic gates corresponding to the parametric XY gate is identified, which includes a parametric quantum logic gate. Each of the quantum logic gates in the second sequence is selected from the native gate set. A native program is generated. The native program includes a third sequence of quantum logic gates. The third sequence of quantum logic gates corresponds to the first sequence of quantum logic gates and includes the second sequence of quantum logic gates. The native program is provided for execution by the quantum processing unit.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 24, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Colm Andrew Ryan, Eric Christopher Peterson, Marcus Palmer da Silva, Michael Justin Gerchick Scheer, Deanna Margo Abrams
  • Patent number: 11551127
    Abstract: In a general aspect, input data for a computer process are preprocessed by a preprocessor unit that includes a quantum processor. In some aspects, a preprocessor unit obtains input data for a computer process that is configured to run on a computer processing unit. Randomized parameter values are computed for variable parameters of a quantum logic circuit based on the input data. A classical processor in the preprocessor unit computes the randomized parameter values from the input data and a set of random numbers. A quantum processor in the preprocessor unit produces quantum processor output data by executing the quantum logic circuit having the randomized parameter values assigned to the variable parameters. Preprocessed data generated based on the quantum processor output data are then provided as the input for the computer process configured to run on the computer processing unit.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: January 10, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Johannes Sebastian Otterbach, Christopher Mogan Wilson, Marcus Palmer da Silva, Nikolas Anton Tezak, Gavin Earl Crooks
  • Patent number: 11521103
    Abstract: In a general aspect, a plurality of distinct quantum processor unit (QPU) instances are utilized to execute a quantum computation. Hybrid classical-quantum computing methods and systems are described which utilize the plurality of QPU instances in the execution of quantum computations.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 6, 2022
    Assignee: Rigetti & Co, LLC
    Inventors: Matthew J. Reagor, Blake Robert Johnson, Marcus Palmer da Silva, Johannes Sebastian Otterbach, Nikolas Anton Tezak, Chad Tyler Rigetti
  • Patent number: 11521104
    Abstract: A quantum computing system computes soft information quantifying an effect of soft noise on multiple rounds of a syndrome measurement that is output by a quantum measurement circuit. The soft noise arises due to imperfections in a readout device that introduce variability in repeated measurements of ancilla qubits and is distinct from quantum noise arising from bit-flips in data qubits that are indirectly measured by the ancilla qubits. The quantum computing system applying decoding logic to identify fault locations within the quantum measurement circuit based on the computed soft information.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: December 6, 2022
    Assignee: Microsoft Licensing Technology, LLC
    Inventors: Nicolas Guillaume Delfosse, Christopher Anand Pattison, Michael Beverland, Marcus Palmer Da Silva
  • Publication number: 20220269963
    Abstract: A quantum computing system computes soft information quantifying an effect of soft noise on multiple rounds of a syndrome measurement that is output by a quantum measurement circuit. The soft noise arises due to imperfections in a readout device that introduce variability in repeated measurements of ancilla qubits and is distinct from quantum noise arising from bit-flips in data qubits that are indirectly measured by the ancilla qubits.
    Type: Application
    Filed: February 19, 2021
    Publication date: August 25, 2022
    Inventors: Nicolas Guillaume DELFOSSE, Christopher Anand PATTISON, Michael BEVERLAND, Marcus Palmer DA SILVA
  • Publication number: 20220231690
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Application
    Filed: August 24, 2021
    Publication date: July 21, 2022
    Applicant: Rigetti & Co, LLC
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Publication number: 20220164693
    Abstract: In a general aspect, a quantum streaming kernel processes a data stream. In some aspects, an input stream of data is converted to an output stream of data by repeatedly receiving new portions of the input stream; encoding each new portion into an internal quantum state of a quantum processor; measuring a first part of the internal quantum state while maintaining coherence of a second part of the internal quantum state; and producing the output stream of data based on the measurements. In some cases, a history of the input stream is preserved by the coherence of the internal quantum state, and the measurements contain information based on the history of the input stream.
    Type: Application
    Filed: February 5, 2021
    Publication date: May 26, 2022
    Applicant: Rigetti & Co, Inc.
    Inventors: Nikolas Anton Tezak, Marcus Palmer da Silva, Robert Stanley Smith, Christopher Mogan Wilson
  • Publication number: 20210294680
    Abstract: A system and method for randomly accessing pairs of quantum gates associated with any given quantum gate included in a set of quantum instructions allows for the reduction of unitary errors when executing the quantum instructions. The system generates a set of modified quantum instructions using the randomly accessed pair of quantum gates. The modified quantum instructions produce the same result as the unmodified quantum instructions when executed on a quantum processing system that does not introduce error when executing the instructions. Additionally, the modified quantum instructions produce a more accurate result with less error than the unmodified quantum instructions when executed on a quantum processing system that introduces error.
    Type: Application
    Filed: August 12, 2019
    Publication date: September 23, 2021
    Inventor: Marcus Palmer Da Silva
  • Patent number: 11108398
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 31, 2021
    Assignee: Rigetti & Co, Inc.
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Patent number: 10846366
    Abstract: In a general aspect, values of input parameters for a quantum approximate optimization algorithm (QAOA) are selected by a Bayesian optimizer. The QAOA can be configured to solve a combinatorial optimization problem (COP), such as Maximum Cut. A hybrid classical-quantum computing system can be used to execute the QAOA and select the input parameters.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: November 24, 2020
    Assignee: Rigetti & Co, Inc.
    Inventors: Johannes Sebastian Otterbach, Jonathan Ward, Marcus Palmer da Silva, Nicholas C. Rubin
  • Publication number: 20200204181
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 25, 2020
    Applicant: Rigetti & Co, Inc.
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Patent number: 10483980
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 19, 2019
    Assignee: Rigetti & Co, Inc.
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Publication number: 20190007051
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Applicant: Rigetti & Co, Inc.
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams