Patents by Inventor Marcus Pfister

Marcus Pfister has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8577444
    Abstract: The invention relates to a method and a device for making correction information for correcting a guidance direction of an instrument. Based on a current position of the tip of the instrument and the current guidance direction of the instrument and the position of a target point in an object, a first straight line indicating the current guidance direction and a second straight line defined by the tip of the instrument and the target point in the object are determined. The second straight line intersects the first straight line and indicates the desired guidance direction. Based on the position of the first and second straight lines relative to one another, a digital item of correction information is specified, wherein the correction image has a correction diagram located in a plane in the perspective of the current guidance direction of the instrument.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: November 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus Klingenbeck-Regn, Marcus Pfister
  • Patent number: 8538504
    Abstract: A method for the merged display of first image information captured using a first imaging device with second image information captured using a second imaging device is provided. The first imaging device records fluorescence images of the area under examination. A second 3D image data record of the area under examination is recorded using an examination procedure based on electromagnetic radiation, such as computer tomography (CT) or magnetic resonance imaging (MRI). The 3D fluorescence image data record and the second 3D image data record are registered with one another, and one or more fluorescence-optically marked, relevant areas of the examination volume, on the basis of the mapping rules determined by the registration process, are displayed on a monitor.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: September 17, 2013
    Inventors: Martin Kleen, Marcus Pfister, Norbert Rahn
  • Patent number: 8346344
    Abstract: An apparatus and method is described for determining the location of a object inside a patient. Three dimensional image data of the patient is obtained by an imaging modality such as a C-arm X-ray device. The same or another imaging modality may be used to obtain projection radiographic images, having a coordinate system that can be registered with respect to that of the three dimensional image. The location of one or more features of a medical treatment device such as a needle or a catheter introduced into the imaging filed of view is determined either by an operator or by image analysis, in at least two projection radiographic images, and the position of the feature located in the three-dimensional volume. The projection on a radiographic image of a vector joining a first and a second position is used to assist in guiding the medical treatment device inside of the patient.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 1, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marcus Pfister, Laura Johnson
  • Publication number: 20120250964
    Abstract: An angiography system for angiographic examination or treatment of an organ, vascular system or other regions of an object of a patient is proposed. The system has an x-ray source and an x-ray image detector disposed at ends of a C-arm, a patient support table, a system control unit, an image system, and a monitor. The object contains two details hiding each other in the x-ray images depending on angulation of the C-arm. The system control unit has a device that detects a 3D dataset of the object registered to the C-arm and detects the information about a course of the object. The device calculates a desired and/or optimum angulation of the C-arm from the detected information and transfers the calculated angulation to the system control unit for adjusting the C-arm to the angulation.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Inventor: Marcus Pfister
  • Publication number: 20120238871
    Abstract: An angiography system for angiographic examination of a patient is provided. The system has an x-ray emitter and an x-ray image detector attached to the ends of a C-arm, a patient support couch, a system control unit, an image system and a monitor. The system control unit generates a mask image that detects a reference image, effects a registration of the reference image to the C-arm, whereby if necessary a segmentation of the examination object is implemented in the reference image, contrasts image regions lying inside of the segmentation in order to generate a mask image, and subtracts the mask image from fluoroscopy live images acquired by the angiography system without contrast agent in order to form a roadmap image. The image system effects a reproduction of the roadmap images on the monitor.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 20, 2012
    Inventor: Marcus Pfister
  • Patent number: 8229198
    Abstract: Method for creating image recordings of blood vessel system of a patient, comprising: after administering contrast agent an image recording is created in a first image recording region of a first position of a detector, the diffusion of the contrast agent is observed to determine a current diffusion position; the position of the detector is changed to a second position as a function of the current diffusion position; an image recording of a second image recording region of the second position of the detector is created; and a part of an image recording in the first position extending in the region between the current diffusion position and the end of the first image recording region and recorded without contrast agent is used as a mask to evaluate a locationally correlated part, recorded with contrast agent, of the image recording in the second position for digital subtraction angiography.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: July 24, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marcus Pfister, Thomas Redel
  • Patent number: 8219183
    Abstract: A generation of sectional images of tissue is provided. In this arrangement a first light-conducting fiber of a device for generating sectional tissue images according to the optical coherence tomography principle, which light-conducting fiber is rotatably accommodated within a catheter tube, is additionally connected to a device for generating light in a further wavelength range and for detecting fluorescent light. With its use sectional tissue images produced according to the optical coherence tomography principle can be superimposed with fluorescent images.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 10, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Maschke, Marcus Pfister
  • Patent number: 8200040
    Abstract: The invention relates to a method for the joint of registering, archiving, contrast-retaining merging, and visualizing of 2D x-ray images and reconstructed 2D projections or 3D views of generated image data in minimally invasive medical interventions or operations performed under x-ray control on internal organs, areas of tissue, lesions, or pathological structures in a patient's body. A first image and the image data of a second image being mixed over the first image are mutually linked, co-registered, and merged using an alpha-channel-based mixing technique, whereby the color values or gray-scale values of the individual pixels of the first image are prior to being mixed-over with the segmented foreground of the second image brightened through the application of a color-value or gray-scale-value for compensating or lessening the reduction in contrast that occurs during mix-over in the first image before being displayed graphically on a monitor terminal.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: June 12, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Marcus Pfister
  • Patent number: 8165660
    Abstract: A system for planning a percutaneous procedure provides a patient 3-dimensional image data set within which an instrument trajectory is defined, for example, by selecting a skin entry point and a target point. A line, or “planned path,” is generated between the points. The system determines whether the path can be targeted so an optical axis of a movable arm coincides with the path so that a laser can be used for instrument guidance or whether a planned path can be targeted so that a C-arm can be made to coincide with the path so that the extension of the path is projected onto a radiation detector, using x-ray radiation. If neither laser guidance or x-ray guidance can be used, the path is replanned.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: April 24, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marcus Pfister, Norbert Strobel
  • Publication number: 20120089003
    Abstract: In a method for a fluoroscopy controlled insertion of a stent into a curved aorta of a patient for aneurysm repair, a 3D volume image is obtained of the patient's aorta at the aneurysm. By knowing a registration of the 3D volume image to a C-arm of an angiographic system and projection geometry of the angiography system, the 3D volume images are projected atomically correct to a 2D fluoroscopy image of the angiography system. For the 2D3D overlay, the 3D volume image is displayed as a curved planar reconstruction in which the 2D fluoroscopy image and the 3D volume image are warped around a curved center line of the patient's curved aorta or around a curved guide instrument center line to correct for the curvature of the aorta so that the previously curved aorta center line or curved center line of the guide instrument turns into a straight line. The 2D3D overlay is used to visualize the insertion of the stent.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Martin Ostermeier, Marcus Pfister
  • Publication number: 20120082363
    Abstract: A method for displaying a vessel of a particular biological subject is proposed. The particular object is inserted into the vessel. The deformation of the vessel is predicted by an inserted object on the basis of experience. This experience is quantified by assigning values to particular parameters, the parameters providing information concerning characteristics of the patient, characteristics of his/her vessel and information about the interventional instrument inserted.
    Type: Application
    Filed: September 9, 2011
    Publication date: April 5, 2012
    Inventor: Marcus Pfister
  • Publication number: 20120078602
    Abstract: A method for predicting aneurysm growth based on CFD simulations derived from at least two angiography recordings is proposed. A first 3-D recording of the aneurysm is recorded at a first time and a first vascular geometry is determined for simulating a first CFD simulation. A second 3-D recording is recorded at a second time and a second vascular geometry is determined for simulating a second CFD simulation. The two 3-D recordings are registered and a local growth rate is determined from the two 3-D recordings. The local growth rate is correlated between the two vascular geometries with hemodynamically derived parameters from the first CFD simulation. A future vascular geometry and/or a future local growth rate is predicted based on the correlation parameters, the hemodynamic parameters from the second CFD simulation and the second vascular geometry.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Inventors: Marcus Pfister, Thomas Redel
  • Publication number: 20120022366
    Abstract: In a method for visualizing placement of a stent in an aorta of a patient with reduced use of contrast agent, a 3D volume image of the aorta of the patient is provided from a CT scan before placing the stent. An angiography system with a C-arm is provided to take 2D images of the patient. A computer is provided having registration software for registering the 3D volume image and 2D images taken by the angiography system. A first segmentation is performed on the 3D volume image to segment the aorta from remaining parts of the 3D image. A second segmentation is performed using the first segmentation on the 3D volume image to segment a bony structure of the patient from remaining parts of the 3D volume image. A first 2D image of the aorta is obtained from a first direction with use of a contrast agent. A second 2D image is obtained from a second direction but without use of contrast agent.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Inventor: Marcus Pfister
  • Patent number: 8103067
    Abstract: There is described an analysis method for at least one image data record of an examination object, wherein each image data record features a multiplicity of image data elements. A position in a multidimensional space is assigned to each image data element. Each image data element features an image data value. The image data values of positionally corresponding image data elements of the image data records are specified by means of at least essentially positionally identical regions of the examination object. A computer automatically divides the image data records into empty regions and signal regions, applying an overall assignment rule which is based on the image data values of the image data elements of a plurality of image data records, such that each image data element of each image data record is assigned to either its empty region or its signal region.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: January 24, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Boese, Estelle Camus, Marcus Pfister, Thomas Redel
  • Patent number: 8078000
    Abstract: The present invention relates to a method, which assists a doctor for instance in orientation in 2D fluoroscopy images. The present invention relates here to a method for displaying co-registered 2D-3D images in medical imaging, comprising the following steps: determine a 3D or 2D projection which is congruent with a 2D image from a 3D image data set, and overlaid display of the 2D image with the 3D or 2D projection on a monitor, characterized in that the two image parts of the two overlaid images can be adjusted and a shift in the two overlaid images which can be adjusted in at least one direction is enabled.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Böhm, Klaus Finkler, Marcus Pfister, Johann Seissl
  • Patent number: 8059874
    Abstract: The invention relates to a method for producing a three-dimensional image dataset of a target volume by using an examination facility having at least two image recording facilities, each featuring a radiation source and a radiation detector, which can be rotated about an axis of rotation which is arranged perpendicular to the connecting line between the radiation source and the radiation detector, comprising: adjusting the recording areas of the image recording facilities such that the recording areas arranged offset in the z-direction supplement each other to form a recording area, which is enlarged in the z-direction; simultaneously recording two-dimensional images in different orientations by means of the image recording facilities rotating about their axis of rotation; reconstructing a three-dimensional sub-image dataset in each instance from the images of the individual image recording facilities; combining the sub-image datasets to form the three-dimensional image dataset.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 15, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marcus Pfister, Bernhard Sandkamp
  • Patent number: 8060186
    Abstract: A method for guiding stent deployment during an endovascular procedure includes providing a virtual stent model of a real stent that specifies a length, diameter, shape, and placement of the real stent. The method further includes projecting the virtual stent model onto a 2-dimensional (2D) DSA image of a target lesion, manipulating a stent deployment mechanism to navigate the stent to the target lesion while simultaneously acquiring real-time 2D fluoroscopic images of the stent navigation, and overlaying each fluoroscopic image on the 2D DSA image having the projected virtual stent model image, where the 2D fluoroscopic images are acquired from a C-arm mounted X-ray apparatus, and updating the projection of the virtual stent model onto the fluoroscopic images whenever a new fluoroscopic image is acquired or whenever the C-arm is moved, where the stent is aligned with the virtual stent model by aligning stent end markers with virtual end markers.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: November 15, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ashraf Mohamed, Chenyang Xu, Frank Sauer, Marcus Pfister, Andrew F Hall, Klaus Klingenbeck-Regn
  • Patent number: 8050483
    Abstract: Registration of preoperatively acquired MRI images of soft parts to intraoperatively acquired X-ray images of soft parts is not possible. The invention shows a way of nevertheless using such preoperatively acquired images for superimposition with 2D projections of the soft parts, taking an indirect route via 3D/3D registration of images of the spinal column. For this purpose, 3D image data sets of the spinal column must be obtained separately on the one hand using MRI and on the other using the X-ray imaging system so that the 3D/3D registration produces a mapping rule which then also applies to the preoperatively acquired images of the soft part if the soft part images and the spinal images are acquired without intervening change in the patient position in the MRI scanner.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: November 1, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Boese, Jörn Justiz, Andreas Meyer, Marcus Pfister
  • Patent number: 8041095
    Abstract: The present invention relates to a method and apparatus for pretreatment planning endovascular coil placement, comprising steps of: a) analyzing three-dimensional data enabling visualization of a volume of interest containing at least a part of a blood vessel with an aneurysm; b) determining the centerline of the vessel; c) determining the aneurysm diameter; d) determining the aneurysm dome height; e) creating a three-dimensional surface model of the aneurysm in the vessel, using the results from the previous steps; f) estimating the volume expansion of one or more coils with the aid of said surface model; and g) visual simulating at least one according to the estimated virtual coil being to place inside the aneurysm.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: October 18, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ashraf Mohamed, Marcus Pfister
  • Patent number: 8036453
    Abstract: A number of two-dimensional projection images of a three-dimensional examination object are assigned image times and imaging parameters. The projection images are combined into reconstruction groups including projection images with image times specifically assigned or within a time interval specific to the reconstruction groups. The reconstruction groups are determined in such a way that three-dimensional reconstructions of the examination object with direction-dependent local resolution can be determined based on the projection images of the reconstruction groups; it is not possible to determine three-dimensional reconstructions of the examination object with direction-independent local resolution. Three-dimensional reconstructions of the examination are determined based on the projection images of the reconstruction groups. Reconstruction times are determined based on the image times assigned to the projection images of the reconstruction groups and assigned to the three-dimensional reconstructions.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: October 11, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wolfgang Härer, Marcus Pfister