Patents by Inventor Marcus Woehler

Marcus Woehler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125088
    Abstract: A rotor blade for a gas turbine, in particular an aircraft gas turbine, having a blade root element and a stream deflection portion adjoining the blade root element (12) in the longitudinal direction of the blade (RR); respective centroids (24) of blade cross-sectional areas of the stream deflection portion residing on a common stacking axis (26). It is provided that, starting from a first centroid (24) of a first blade cross-sectional area adjoining the blade root element (12), the stacking axis (26) extend within a cone (28) whose apex resides within the first centroid (24), and whose cone height (KH) extends orthogonally to the plane of the blade cross-sectional area; the angle (?) of the cone (28) being greater than 0° and smaller than or equal to 4°; preferably greater than or equal to 0.5° and smaller than or equal to 2°.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 21, 2021
    Assignee: MTU Aero Engines AG
    Inventors: Carsten Schoenhoff, Martin Pernleitner, Klaus Wittig, Manfred Dopfer, Marcus Woehler, Wilfrid Schuette, Christoph Bichlmaier, Rudolf Stanka, Norman Cleesattel
  • Patent number: 10655483
    Abstract: A guide vane segment 10 for a turbomachine includes a radially inner shroud plate 13 having a shroud plate surface 14 that is adapted to be configured in the turbomachine to face a rotor blade 20 adjacent to the guide vane segment, and thereby essentially extend along an outer conical surface K1 whose cone axis coincides with the axis of rotation A of a rotor shaft 30. In a radially inner region, a rotor blade 20 for a turbomachine has a base plate 23 having a base plate surface 24 that is adapted to be configured in the turbomachine to face a shroud of a guide vane row 10 adjacent to the rotor blade and thereby essentially extend along an outer conical surface K2 whose cone axis coincides with the axis of rotation A of a rotor shaft 30.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: May 19, 2020
    Assignee: MTU Aero Engines AG
    Inventors: Markus Schlemmer, Martin Pernleitner, Manfred Dopfer, Marcus Woehler, Oliver Thiele, Bernd Kislinger, Norman Cleesattel, Christoph Lauer, Manfred Schill, Manuel Hein
  • Patent number: 10267157
    Abstract: The present invention relates to a rotating blade for a turbomachine, in particular a compressor stage or a turbine stage of a gas turbine, particularly of an aircraft engine, having a blade element for deflecting the flow, with a pressure side and a suction side, these sides being joined by a leading edge and a trailing edge, wherein a stacking axis of the blade element, in the radial direction over a radius r from a root of a blade element at r=0 to a tip of a blade element at r=H, has a course x(r) in a first downstream direction perpendicular to the radial direction and parallel to a principal axis of the turbomachine and has a course y(r) in a second direction perpendicular to the radial direction and to the first direction.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 23, 2019
    Assignee: MTU Aero Engines AG
    Inventors: Kaspar Wolf, Klaus Wittig, Marcus Woehler, Martin Pernleitner, Wilfried Schuette
  • Publication number: 20170356293
    Abstract: A balancing weight for a rotor blade of a turbine stage of a gas turbine, in particular of an aircraft gas turbine; including a first bent fastening portion that is couplable to an axial leading edge of a shroud of the rotor blade, a second fastening portion that is couplable to an axial trailing edge of the shroud, and a middle portion that joins the first fastening portion and the second fastening portion; the second fastening portion assumes a first position relative to the first fastening portion prior to a mounting of the balancing weight on the rotor blade, and a second position relative to the first fastening portion subsequently to the mounting of the balancing weight on the rotor blade; in the second relative position, the middle portion or/and the second fastening portion being deformed, in particular plastically deformed.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventor: Marcus Woehler
  • Publication number: 20170159461
    Abstract: A rotor blade for a gas turbine, in particular an aircraft gas turbine, having a blade root element and a stream deflection portion adjoining the blade root element (12) in the longitudinal direction of the blade (RR); respective centroids (24) of blade cross-sectional areas of the stream deflection portion residing on a common stacking axis (26). It is provided that, starting from a first centroid (24) of a first blade cross-sectional area adjoining the blade root element (12), the stacking axis (26) extend within a cone (28) whose apex resides within the first centroid (24), and whose cone height (KH) extends orthogonally to the plane of the blade cross-sectional area; the angle (?) of the cone (28) being greater than 0° and smaller than or equal to 4°; preferably greater than or equal to 0.5° and smaller than or equal to 2°.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Inventors: Carsten Schoenhoff, Martin Pernleitner, Klaus Wittig, Manfred Dopfer, Marcus Woehler, Wilfrid Schuette, Christoph Bichlmaier, Rudolf Stanka, Norman Cleesattel
  • Publication number: 20170159464
    Abstract: A guide vane segment 10 for a turbomachine includes a radially inner shroud plate 13 having a shroud plate surface 14 that is adapted to be configured in the turbomachine to face a rotor blade 20 adjacent to the guide vane segment, and thereby essentially extend along an outer conical surface K1 whose cone axis coincides with the axis of rotation A of a rotor shaft 30. In a radially inner region, a rotor blade 20 for a turbomachine has a base plate 23 having a base plate surface 24 that is adapted to be configured in the turbomachine to face a shroud of a guide vane row 10 adjacent to the rotor blade and thereby essentially extend along an outer conical surface K2 whose cone axis coincides with the axis of rotation A of a rotor shaft 30.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 8, 2017
    Inventors: Markus Schlemmer, Martin Pernleitner, Manfred Dopfer, Marcus Woehler, Oliver Thiele, Bernd Kislinger, Norman Cleesattel, Christoph Lauer, Manfred Schill, Manuel Hein
  • Patent number: 9657581
    Abstract: A rotor for a turbomachine, in particular for a jet engine, having a blade ring which includes multiple differently designed rotor blades (10a, 10b) having blade platforms (14a, 14b) engaged flush with one another, the blade ring including at least two groups of differently designed rotor blades (10a, 10b), each group of rotor blades (10a, 10b) being assigned blade platforms (14a, 14b), each of which is engageable flush with a matching blade platform (14a, 14b) of at least one other group of rotor blades (10a, 10b) and not with a blade platform (14a, 14b) of the same group of rotor blades (10a, 10b). A method for manufacturing a blade ring of a rotor for a turbomachine is also provided.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: May 23, 2017
    Assignee: MTU Aero Engines GmbH
    Inventors: Marcus Woehler, Martin Pernleitner, Rudolf Stanka
  • Publication number: 20170114644
    Abstract: The present invention relates to a rotating blade for a turbomachine, in particular a compressor stage or a turbine stage of a gas turbine, particularly of an aircraft engine, having a blade element (10) for deflecting the flow, with a pressure side and a suction side (11), these sides being joined by a leading edge and a trailing edge (12, 13), wherein a stacking axis (S) of the blade element (10), in the radial direction (R) over a radius r from a root of a blade element at r=0 to a tip of a blade element at r=H, has a course x(r) in a first downstream direction (X) perpendicular to the radial direction (R) and parallel to a principal axis of the turbomachine and has a course y(r) in a second direction (Y) perpendicular to the radial direction (R) and to the first direction (X).
    Type: Application
    Filed: October 19, 2016
    Publication date: April 27, 2017
    Inventors: Kaspar Wolf, Klaus Wittig, Marcus Woehler, Martin Pernleitner, Wilfried Schuette
  • Patent number: 9169734
    Abstract: A system for specifying an installation position of adjacent rotor blades of a blade row of a turbomachine is disclosed. The system has a plurality of axial securing elements, which have at least two sections with different profile areas for the arrangement in each case between a groove base of a rotor shaft and a blade root, which are joined together by a connecting web at a groove distance from one another, and which have counter-contours on the blade root side for forming in each case a positive-fit pair with the profile areas. Also disclosed are a securing element and a rotor blade for this type of system, a turbomachine having a rotor which has this type of system, and a method for manufacturing this type of rotor.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 27, 2015
    Assignee: MTU Aero Engines AG
    Inventor: Marcus Woehler
  • Publication number: 20140072432
    Abstract: A blade arrangement for a turbo engine, in particular a gas turbine, with a rotor and several blades fastened thereto, which are configured to be systematically different, wherein at least two adjacent blades have systematically different shrouds (12, 22) and/or inner blade platforms (11, 21).
    Type: Application
    Filed: June 29, 2011
    Publication date: March 13, 2014
    Applicant: MTU Aero Engines GmbH
    Inventors: Marcus Woehler, Harald Schoenenborn