Patents by Inventor Marcus Worsley

Marcus Worsley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938545
    Abstract: In accordance with one aspect of the presently disclosed inventive concepts, a metal aerogel includes a plurality of metal nanowires formed into a porous three-dimensional structure, where pores in the structure are anisotropic.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: March 26, 2024
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Fang Qian, Thomas Han, Marcus Worsley
  • Publication number: 20230275238
    Abstract: Disclosed are flow-through electrode devices and techniques for making flow-through electrodes. In one aspect, a flow through electrode apparatus comprises one or more fiber layers. Each fiber layer comprises a plurality of fibers oriented to be orthogonal to a flow direction of a fluid. The plurality of fibers are configured to cause an inertial flow of the fluid around the plurality of fibers at a first flow rate of the fluid.
    Type: Application
    Filed: March 11, 2022
    Publication date: August 31, 2023
    Inventors: Victor Alfred Beck, Sarah Baker, Swetha Chandrasekaran, Eric Duoss, Jean-Baptiste Forien, Anna Nikolaevna Ivanovskaya, Marcus Worsley
  • Publication number: 20230037628
    Abstract: Methods of forming joinery between components formed from dissimilar materials, and assemblies utilizing the joinery. The components include interface surfaces having complementary peaks and valleys that interlock. A compliant interface is formed between the interface surfaces and the interface can be configured to provide functionality.
    Type: Application
    Filed: August 3, 2021
    Publication date: February 9, 2023
    Inventors: Amy Wat, Gabriella King, James Cahill, Joshua Kuntz, Wyatt Du Frane, Marcus Worsley, Logan Bekker, Xiaojie Xu, Yici Sun, Joshua Deotte
  • Patent number: 11260343
    Abstract: In one embodiment, a method for separating acidic gases from a gas mixture includes exposing the gas mixture to a separation membrane at an elevated temperature, where the separation membrane includes a porous support and at least one molten alkali metal hydroxide disposed within pores of the porous support.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 1, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Patent number: 11260344
    Abstract: In one embodiment, a separation membrane includes: a porous support structure, wherein the porous support structure comprises a system of continuous pores connecting an inlet of the separation membrane to an outlet of the separation membrane; and at least one alkali metal hydroxide disposed within pores of the porous support structure. Other aspects and embodiments of the disclosed inventive concepts will become apparent from the detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 1, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Publication number: 20200157657
    Abstract: In accordance with one aspect of the presently disclosed inventive concepts, a metal aerogel includes a plurality of metal nanowires formed into a porous three-dimensional structure, where pores in the structure are anisotropic.
    Type: Application
    Filed: June 22, 2018
    Publication date: May 21, 2020
    Inventors: Fang Qian, Thomas Han, Marcus Worsley
  • Patent number: 10633255
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 28, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus Worsley, Monika M. Biener, Maira Raquel Ceron Hernandez
  • Publication number: 20200030740
    Abstract: In one embodiment, a method for separating acidic gases from a gas mixture includes exposing the gas mixture to a separation membrane at an elevated temperature, where the separation membrane includes a porous support and at least one molten alkali metal hydroxide disposed within pores of the porous support.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Publication number: 20200030741
    Abstract: In one embodiment, a separation membrane includes: a porous support structure, wherein the porous support structure comprises a system of continuous pores connecting an inlet of the separation membrane to an outlet of the separation membrane; and at least one alkali metal hydroxide disposed within pores of the porous support structure. Other aspects and embodiments of the disclosed inventive concepts will become apparent from the detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Patent number: 10533261
    Abstract: A product according to one embodiment includes a first layer comprising a first material, the first layer having a gradient in composition, microstructure and/or density in an x-y plane, and the x-y plane being oriented parallel to a plane of deposition of the first layer. The first material includes non-spherical particles; and the product is optically transparent. A ceramic according to another embodiment includes a plurality of layers comprising non-spherical particles of a non-cubic material. Each layer is individually characterized by the non-spherical particles thereof being aligned in a common direction. A product in another embodiment includes a first layer having a first composition, a first microstructure, and a first density; and a second layer above the first layer, the second layer having: a second composition, a second microstructure, and/or a second density. A gradient in composition, microstructure, and/or density exists between the first layer and the second layer.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 14, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus Worsley
  • Patent number: 10464015
    Abstract: In one embodiment, a separation membrane includes: a porous support structure; and at least one alkali metal hydroxide disposed within pores of the porous support structure. In another embodiment, a method for separating acidic gases from a gas mixture includes exposing the gas mixture to a separation membrane at an elevated temperature, where the separation membrane includes a porous support and at least one molten alkali metal hydroxide disposed within pores of the porous support.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: November 5, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Patent number: 10407792
    Abstract: In one embodiment, a method for forming a ceramic, metal, or cermet includes: providing a first solution comprising a first solvent and a first material to a device including an electrophoretic deposition (EPD) chamber; applying a voltage difference across a first electrode and a second electrode of the device; electrophoretically depositing the first material above the first electrode to form a first layer; introducing a second solution including a second solvent and a second material to the EPD chamber; applying a voltage difference across the first electrode and the second electrode; and electrophoretically depositing the second material above the first electrode to form a second layer. The first layer has a first composition, a first microstructure, and a first density, while the second layer has a second composition, a second microstructure, and a second density. At least one of the foregoing features of the first and second layers are different.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: September 10, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus Worsley
  • Publication number: 20180118574
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 3, 2018
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus Worsley, Monika M. Biener, Maira Raquel Ceron Hernandez
  • Patent number: 9932654
    Abstract: A system for extracting uranium from wet-process phosphoric acid (WPA), includes an ion exchange resin or solvent extractor for separating uranium from WPA to produce a loaded uranium solution stream and a uranium depleted WPA stream. An ion exchange resin is positioned to receive the loaded uranium solution stream and bind uranium species thereto. An anion solution stream is positioned to feed a solution comprising anions onto the ion exchange resin to form a loaded uranium eluant stream. The loaded uranium eluant stream may then be treated to provide a uranium containing product.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: April 3, 2018
    Assignee: Urtek, LLC
    Inventors: Marcus Worsley Richardson, James Andrew Davidson, Bryn Llywelyn Jones, Jessica Mary Page, Karin Helene Soldenhoff, Tomasz Artur Safinski, Manh Toan Tran
  • Publication number: 20170333834
    Abstract: In one embodiment, a separation membrane includes: a porous support structure; and at least one alkali metal hydroxide disposed within pores of the porous support structure. In another embodiment, a method for separating acidic gases from a gas mixture includes exposing the gas mixture to a separation membrane at an elevated temperature, where the separation membrane includes a porous support and at least one molten alkali metal hydroxide disposed within pores of the porous support.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: Marcus Worsley, Patrick Campbell, Sangil Kim, Matthew Merrill
  • Publication number: 20160355944
    Abstract: In one embodiment, a method for forming a ceramic, metal, or cermet includes: providing a first solution comprising a first solvent and a first material to a device including an electrophoretic deposition (EPD) chamber; applying a voltage difference across a first electrode and a second electrode of the device; electrophoretically depositing the first material above the first electrode to form a first layer; introducing a second solution including a second solvent and a second material to the EPD chamber; applying a voltage difference across the first electrode and the second electrode; and electrophoretically depositing the second material above the first electrode to form a second layer. The first layer has a first composition, a first microstructure, and a first density, while the second layer has a second composition, a second microstructure, and a second density. At least one of the foregoing features of the first and second layers are different.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 8, 2016
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus Worsley
  • Publication number: 20160348262
    Abstract: A product according to one embodiment includes a first layer comprising a first material, the first layer having a gradient in composition, microstructure and/or density in an x-y plane, and the x-y plane being oriented parallel to a plane of deposition of the first layer. The first material includes non-spherical particles; and the product is optically transparent. A ceramic according to another embodiment includes a plurality of layers comprising non-spherical particles of a non-cubic material. Each layer is individually characterized by the non-spherical particles thereof being aligned in a common direction. A product in another embodiment includes a first layer having a first composition, a first microstructure, and a first density; and a second layer above the first layer, the second layer having: a second composition, a second microstructure, and/or a second density. A gradient in composition, microstructure, and/or density exists between the first layer and the second layer.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus Worsley
  • Patent number: 9453289
    Abstract: A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: September 27, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus Worsley
  • Patent number: 9217189
    Abstract: A process for extracting uranium compounds from wet-process phosphoric acid (WPA) includes lowering iron content of WPA to produce a lowered iron WPA, reducing valency of any remaining iron in the lowered iron WPA to produce a reduced iron valency WPA. Uranium compounds are extracted from the reduced iron valency WPA via a solvent extraction process.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: December 22, 2015
    Assignee: Urtek, LLC
    Inventors: James Andrew Davidson, Mark S. Chalmers, Bryn Llywelyn Jones, Paul Robert Kucera, Peter Douglas Macintosh, Jessica Mary Page, Marcus Worsley Richardson, Karin Helene Soldenhoff, Colin Wayrauch
  • Publication number: 20150078965
    Abstract: A system for extracting uranium from wet-process phosphoric acid (WPA), includes an ion exchange resin or solvent extractor for separating uranium from WPA to produce a loaded uranium solution stream and a uranium depleted WPA stream. An ion exchange resin is positioned to receive the loaded uranium solution stream and bind uranium species thereto. An anion solution stream is positioned to feed a solution comprising anions onto the ion exchange resin to form a loaded uranium eluant stream. The loaded uranium eluant stream may then be treated to provide a uranium containing product.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 19, 2015
    Inventors: Marcus Worsley RICHARDSON, James Andrew DAVIDSON, Bryn Llywelyn JONES, Jessica Mary PAGE, Karin Helene SOLDENHOFF, Tomasz Artur SAFINSKI, Manh Toan TRAN