Patents by Inventor Marcus ZENGER

Marcus ZENGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961820
    Abstract: A method for producing a connection between component parts and a component made of component parts are disclosed. In an embodiment, a includes providing a first component part having a first exposed insulation layer and a second component part having a second exposed insulation layer, wherein each of the insulation layers has at least one opening, joining together the first and second component parts such that the opening of the first insulation layer and the opening of the second insulation layer overlap in top view, wherein an Au layer and a Sn layer are arranged one above the other in at least one of the openings and melting the Au layer and the Sn layer to form an AuSn alloy, wherein the AuSn alloy forms a through-via after cooling electrically conductively connecting the first component part to the second component part.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 16, 2024
    Assignee: OSRAM OLED GmbH
    Inventors: Simeon Katz, Mathias Wendt, Sophia Huppmann, Marcus Zenger, Jens Mueller
  • Publication number: 20220013700
    Abstract: In one embodiment, a method includes providing a chip carrier, creating holes for electrical through-connections in the chip carrier, producing a thin metallization in the holes, filling the metallized holes with a filling of a plastic, and applying optoelectronic semiconductor chips on the metallized holes so that the semiconductor chips are ohmically conductively connected with an associated metallization, wherein a mean thickness of the metallization in the holes is between 0.1 ?m and 0.7 ?m, inclusive, and wherein a diameter of the holes exceeds the mean thickness of the metallization by at least a factor of 10.
    Type: Application
    Filed: December 4, 2019
    Publication date: January 13, 2022
    Inventors: Pascal Porten, Mathias Kämpf, Marcus Zenger
  • Patent number: 11183621
    Abstract: A component may include a semiconductor chip, a buffer layer, a connecting layer, and a metal carrier. The semiconductor chip may include a substrate and a semiconductor body arranged thereon. The metal carrier may have a thermal expansion coefficient at least 1.5 times as great as a thermal expansion coefficient of the substrate or of the semiconductor chip. The chip may be fastened on the metal carrier by the connecting layer, and the buffer layer may have a yield stress ranging from 10 MPa. The buffer layer may have a thickness ranging from 2 um to 10 um and adjoin the chip. The substrate and the metal carrier may have a higher yield strength than the buffer layer.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 23, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Paola Altieri-Weimar, Ingo Neudecker, Andreas Ploessl, Marcus Zenger
  • Publication number: 20200294962
    Abstract: A method for producing a connection between component parts and a component made of component parts are disclosed. In an embodiment, a includes providing a first component part having a first exposed insulation layer and a second component part having a second exposed insulation layer, wherein each of the insulation layers has at least one opening, joining together the first and second component parts such that the opening of the first insulation layer and the opening of the second insulation layer overlap in top view, wherein an Au layer and a Sn layer are arranged one above the other in at least one of the openings and melting the Au layer and the Sn layer to form an AuSn alloy, wherein the AuSn alloy forms a through-via after cooling electrically conductively connecting the first component part to the second component part.
    Type: Application
    Filed: February 5, 2019
    Publication date: September 17, 2020
    Inventors: Simeon Katz, Mathias Wendt, Sophia Huppmann, Marcus Zenger, Jens Mueller
  • Publication number: 20200227604
    Abstract: A component may include a semiconductor chip, a buffer layer, a connecting layer, and a metal carrier. The semiconductor chip may include a substrate and a semiconductor body arranged thereon. The metal carrier may have a thermal expansion coefficient at least 1.5 times as great as a thermal expansion coefficient of the substrate or of the semiconductor chip. The chip may be fastened on the metal carrier by the connecting layer, and the buffer layer may have a yield stress ranging from 10 MPa. The buffer layer may have a thickness ranging from 2 um to 10 um and adjoin the chip. The substrate and the metal carrier may have a higher yield strength than the buffer layer.
    Type: Application
    Filed: July 19, 2018
    Publication date: July 16, 2020
    Inventors: Paola Altieri-Weimar, Ingo Neudecker, Andreas Ploessl, Marcus Zenger
  • Patent number: 10686099
    Abstract: An optoelectronic device (50) comprising a semiconductor body (10a, 10b, 10c) having an optically active region (12), a carrier (60), and a pair of connection layers (30a, 30b, 30c) having a first connection layer (32) and a second connection layer (34), wherein: the semiconductor body is disposed on the carrier, the first connection layer is disposed between the semiconductor body and the carrier and is connected to the semiconductor body, the second connection layer is disposed between the first connection layer and the carrier, at least one layer selected from the first connection layer and the second connection layer contains a radiation-permeable and electrically conductive oxide, and the first connection layer and the second connection layer are directly connected to each other at least in regions in one or more bonding regions, so that the pair of connection layers is involved in the mechanical connection of the semiconductor body to the carrier. A production process is also specified.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: June 16, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sophia Huppmann, Simeon Katz, Marcus Zenger
  • Patent number: 10475955
    Abstract: A method for producing a plurality of components and a component are disclosed. In an embodiment the method includes providing a carrier composite comprising a base body and a planar connecting surface, providing a wafer composite comprising a semiconductor body composite and a planar contact surface, connecting the wafer composite to the carrier composite thereby forming a joint composite so that the planar contact surface and the planar connecting surface are joined forming a joint boundary surface. The method further includes reducing inner mechanical stress in the joint composite so that a material of the carrier composite is removed in places, wherein the joint composite is thermally treated in order to form a permanent mechanically-stable connection between the wafer composite and the carrier composite, and wherein reducing inner stress is effected prior to the thermal treatment.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Sophia Huppmann, Simeon Katz, Marcus Zenger, Dominik Scholz
  • Patent number: 10431715
    Abstract: A device and a method for producing a device are disclosed. In an embodiment the device includes a first component; a second component; and a connecting element arranged between the first component and the second component, wherein the connecting element comprises at least a first phase and a second phase, wherein the first phase comprises a first metal having a first concentration, a second metal having a second concentration and a third metal having a third concentration, wherein the second phase comprises the first metal having a fourth concentration, the second metal and the third metal, wherein the first metal, the second metal and the third metal are different from one another and are suitable for reacting at a processing temperature of less than 200° C., and wherein the following applies: c11?c25 and c11?c13?c12.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: October 1, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Andreas Weimar, Mathias Wendt, Marcus Zenger
  • Publication number: 20190214525
    Abstract: A device and a method for producing a device are disclosed. In an embodiment the device includes a first component; a second component; and a connecting element arranged between the first component and the second component, wherein the connecting element comprises at least a first phase and a second phase, wherein the first phase comprises a first metal having a first concentration, a second metal having a second concentration and a third metal having a third concentration, wherein the second phase comprises the first metal having a fourth concentration, the second metal and the third metal, wherein the first metal, the second metal and the third metal are different from one another and are suitable for reacting at a processing temperature of less than 200° C., and wherein the following applies: c11?c25 and c11 ?c13?c12.
    Type: Application
    Filed: August 23, 2016
    Publication date: July 11, 2019
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Andreas Weimar, Mathias Wendt, Marcus Zenger
  • Publication number: 20190097088
    Abstract: An optoelectronic device (50) comprising a semiconductor body (10a, 10b, 10c) having an optically active region (12), a carrier (60), and a pair of connection layers (30a, 30b, 30c) having a first connection layer (32) and a second connection layer (34), wherein: the semiconductor body is disposed on the carrier, the first connection layer is disposed between the semiconductor body and the carrier and is connected to the semiconductor body, the second connection layer is disposed between the first connection layer and the carrier, at least one layer selected from the first connection layer and the second connection layer contains a radiation-permeable and electrically conductive oxide, and the first connection layer and the second connection layer are directly connected to each other at least in regions in one or more bonding regions, so that the pair of connection layers is involved in the mechanical connection of the semiconductor body to the carrier. A production process is also specified.
    Type: Application
    Filed: February 10, 2017
    Publication date: March 28, 2019
    Inventors: Sophia HUPPMANN, Simeon KATZ, Marcus ZENGER
  • Patent number: 10204880
    Abstract: A device and a method for producing a device are disclosed. In an embodiment the device includes a first component, a second component and a connecting element directly arranged between the first component and the second component, wherein the connecting element includes at least a first metal, which is formed as an adhesive layer, a diffusion barrier and a component of a first phase and a second phase of the connecting element, wherein the adhesive layer is arranged on the first component and/or the second component, wherein the first phase and/or the second phase includes, besides the first metal, further metals different from the first metal, wherein a concentration of the first metal in the first phase is greater than a concentration of the first metal in the second phase, and wherein the connecting element includes a layer of a silicide of the first metal.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: February 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Mathias Wendt, Marcus Zenger
  • Publication number: 20180358509
    Abstract: A method for producing a plurality of components and a component are disclosed. In an embodiment the method includes providing a carrier composite comprising a base body and a planar connecting surface, providing a wafer composite comprising a semiconductor body composite and a planar contact surface, connecting the wafer composite to the carrier composite thereby forming a joint composite so that the planar contact surface and the planar connecting surface are joined forming a joint boundary surface. The method further includes reducing inner mechanical stress in the joint composite so that a material of the carrier composite is removed in places, wherein the joint composite is thermally treated in order to form a permanent mechanically-stable connection between the wafer composite and the carrier composite, and wherein reducing inner stress is effected prior to the thermal treatment.
    Type: Application
    Filed: November 30, 2016
    Publication date: December 13, 2018
    Inventors: Sophia Huppmann, Simeon Katz, Marcus Zenger, Dominik Scholz
  • Publication number: 20180261564
    Abstract: A device and a method for producing a device are disclosed. In an embodiment the device includes a first component, a second component and a connecting element directly arranged between the first component and the second component, wherein the connecting element includes at least a first metal, which is formed as an adhesive layer, a diffusion barrier and a component of a first phase and a second phase of the connecting element, wherein the adhesive layer is arranged on the first component and/or the second component, wherein the first phase and/or the second phase includes, besides the first metal, further metals different from the first metal, wherein a concentration of the first metal in the first phase is greater than a concentration of the first metal in the second phase, and wherein the connecting element includes a layer of a silicide of the first metal.
    Type: Application
    Filed: August 23, 2016
    Publication date: September 13, 2018
    Inventors: Barbara Behr, Mathias Wendt, Marcus Zenger
  • Patent number: 10046408
    Abstract: A device is specified, said device comprising a first component (1), a second component (2), and a connecting component (3) comprising at least a first region (31) and at least a second region (32). The composition of the first region (31) differs from the composition of the second region (32). The connecting component (3) is arranged between the first component (1) and the second component (2). The connecting component (3) comprises different kinds of metals, the first region (31) of the connecting component (3) comprises a first metal (41), and the concentration of the first metal (41) is greater in the first region (31) than the concentration of the first metal (41) in the second region (32).
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 14, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Andreas Ploessl, Mathias Wendt, Marcus Zenger
  • Publication number: 20160346857
    Abstract: A device is specified, said device comprising a first component (1), a second component (2), and a connecting component (3) comprising at least a first region (31) and at least a second region (32). The composition of the first region (31) differs from the composition of the second region (32). The connecting component (3) is arranged between the first component (1) and the second component (2). The connecting component (3) comprises different kinds of metals, the first region (31) of the connecting component (3) comprises a first metal (41), and the concentration of the first metal (41) is greater in the first region (31) than the concentration of the first metal (41) in the second region (32).
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Inventors: Barbara Behr, Andreas Ploessl, Mathias Wendt, Marcus Zenger
  • Patent number: 9391252
    Abstract: An optoelectronic component comprising a semiconductor body, a first connection layer, an insulation layer and a second connection layer, wherein the semiconductor body has an active region for generating electromagnetic radiation and the second connection layer comprises a first partial layer and a second partial layer is specified, wherein the insulation layer electrically insulates the first connection layer from the second connection layer, the first partial layer is arranged between the second partial layer and the semiconductor body in a vertical direction, in a plan view of the semiconductor body the first connection layer overlaps the first partial layer and is spaced apart from the second partial layer in a lateral direction, and the first connection layer has a first layer thickness and the second partial layer has a second layer thickness, wherein the first layer thickness and the second layer thickness differ from one another at most by 20%.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 12, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Georg Hartung, Marcus Zenger, Barbara Behr
  • Publication number: 20150115305
    Abstract: An optoelectronic component comprising a semiconductor body, a first connection layer, an insulation layer and a second connection layer, wherein the semiconductor body has an active region for generating electromagnetic radiation and the second connection layer comprises a first partial layer and a second partial layer is specified, wherein the insulation layer electrically insulates the first connection layer from the second connection layer, the first partial layer is arranged between the second partial layer and the semiconductor body in a vertical direction, in a plan view of the semiconductor body the first connection layer overlaps the first partial layer and is spaced apart from the second partial layer in a lateral direction, and the first connection layer has a first layer thickness and the second partial layer has a second layer thickness, wherein the first layer thickness and the second layer thickness differ from one another at most by 20%.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Inventors: Georg HARTUNG, Marcus ZENGER, Barbara TAUTZ