Patents by Inventor Marek Danielewski

Marek Danielewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10967328
    Abstract: A method for simultaneous removal of NO and carbonic particles and inorganic dust from flue gases in a reactor with a catalyst for direct decomposition of nitric oxide located on a metallic monolith, includes tangential introduction of flue gases to the reactor circumference. Flue gases flow rotationally and downwards in the reactor in contact with an undulating surface of metallic foil located on an inner wall of the reactor chamber and in contact with the catalyst on a spiral band falling to the lower part of the reactor, and next flue gases jet direction counter-currently to a cylindrical inner chamber containing slices of the monolithic catalyst disturbing laminar flow of the flue gases jet. The reactor arrangement provides for simultaneous removal of NO and carbon particles and inorganic dust from flue gases.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: April 6, 2021
    Assignee: UNIWERSYTET JAGIELLONSKI
    Inventors: Mieczyslawa Najbar, Ryszard Lech, Marek Danielewski, Janusz Budzioch
  • Publication number: 20180050306
    Abstract: The method of simultaneous removal of NO and carbonic particles and inorganic dust from flue gases in the reactor equipped with the catalyst for direct decomposition of nitric oxide located on a metallic monolith consists in tangential introduction of flue gases to the reactor circumfer-ence generating rotational flow of the flue gases downwards of the reactor with simultaneous flow disturbance due to flue gases contact with undulating surface of metallic foil located on an inner wall of the reactor chamber and split of the flue gases by contact with the catalyst located on a spiral band falling to the lower part of the reactor, and next flue gases jet direction counter-currently to a cylindrical inner chamber containing the slices of the monolithic catalyst disturbing laminar flow of the flue gases jet. The deposited solid particles of the pollutants are collected in the lower part of the re-actor.
    Type: Application
    Filed: December 10, 2012
    Publication date: February 22, 2018
    Inventors: Mieczyslawa NAJBAR, Ryszard LECH, Marek DANIELEWSKI, Janusz BUDZIOCH
  • Patent number: 5718777
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from the refractory metals Mo, W, Nb, and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: February 17, 1998
    Assignees: Koji Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5587028
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from refractory metals of Mo. W, Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: December 24, 1996
    Assignees: Koji Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5482577
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from refractory metals of Mo. W, Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy oxidation resistance.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: January 9, 1996
    Assignees: Koji Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5454884
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from refractory metals of Mo. W, Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: October 3, 1995
    Assignees: Kogi Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazakt, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5380375
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of Cr and at least one element selected from refractory metals of Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: January 10, 1995
    Assignees: Koji Hashimoto, Yoshida Kogyo K.K.
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski