Patents by Inventor Marek L. Wilmanowicz

Marek L. Wilmanowicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11148643
    Abstract: A windshield wiper assembly for an automobile, comprising a wiper arm, a wiper blade, a plurality of double claw fixtures pivotally mounted onto the wiper arm and adapted to support the wiper blade on the wiper arm, and an actuator adapted to selectively induce rotation of the wiper blade along a longitudinal axis of the wiper blade relative to the wiper arm, each of the double claw fixtures adapted to rotatably support the wiper blade.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: October 19, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas W. Jozwiak, Thomas W. Cox, Marek L. Wilmanowicz
  • Publication number: 20210078541
    Abstract: A windshield wiper assembly for an automobile, comprising a wiper arm, a wiper blade, a plurality of double claw fixtures pivotally mounted onto the wiper arm and adapted to support the wiper blade on the wiper arm, and an actuator adapted to selectively induce rotation of the wiper blade along a longitudinal axis of the wiper blade relative to the wiper arm, each of the double claw fixtures adapted to rotatably support the wiper blade.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Thomas W. Jozwiak, Thomas W. Cox, Marek L. Wilmanowicz
  • Patent number: 9109480
    Abstract: A system and method for initiating an engine after-run state and controlling a nitrogen oxide sensor self-diagnostic tool are provided. The system may include an internal combustion engine, an exhaust system, a selective catalytic reduction (SCR) device and at least two NOx sensors to measure the efficiency of the SCR device and a controller or host machine. The controller, via the present method, executes a first control action to disable the self-diagnostic tool when one of an occurrence of a particulate filter regeneration event and a non-occurrence of a calibration threshold is detected. The controller executes a second control action, initiating an engine after-run state and enabling the self-diagnostic tool when one of a non-occurrence of a particulate filter regeneration event and an occurrence of the calibration threshold is detected.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 18, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E Kowalkowski, John David Barta, Scott McLane, Marek L. Wilmanowicz, Benjamin Radke, Jason J Chung
  • Publication number: 20140144126
    Abstract: A system and method for initiating an engine after-run state and controlling a nitrogen oxide sensor self-diagnostic tool are provided. The system may include an internal combustion engine, an exhaust system, a selective catalytic reduction (SCR) device and at least two NOx sensors to measure the efficiency of the SCR device and a controller or host machine. The controller, via the present method, executes a first control action to disable the self-diagnostic tool when one of an occurrence of a particulate filter regeneration event and a non-occurrence of a calibration threshold is detected. The controller executes a second control action, initiating an engine after-run state and enabling the self-diagnostic tool when one of a non-occurrence of a particulate filter regeneration event and an occurrence of the calibration threshold is detected.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Janean E. Kowalkowski, John David Barta, Scott McLane, Marek L. Wilmanowicz, Benjamin Radke, Jason J. Chung
  • Patent number: 8631891
    Abstract: A vehicular powertrain system includes an engine, an electro-mechanical transmission and an electric machine arranged in an input-split hybrid configuration. A control system for the powertrain system includes a control module signally connected to a plurality of input devices and configured to execute program code stored on a computer readable medium to control the powertrain. The program code monitors operator inputs, determines an intent to service the vehicle based upon the operator inputs, commands the electric machine to generate a net torque output of zero, and controls the engine speed correlative to an operator depression of an accelerator pedal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 21, 2014
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Marek L. Wilmanowicz, Matthew Leonard Kaufer, Mark J. Potter, Anthony H. Heap, William R. Cawthorne, Michael J. Bolton
  • Patent number: 8600605
    Abstract: A distributed on-board diagnostic (OBD) architecture for a control system of a vehicle includes a plurality of control modules that are in communication with one another and a designated master OBD control module that is one of the plurality of control modules. The master OBD control module performs functions that a remainder of the plurality of control modules are incapable of performing including at least one of arbitrating a malfunction indicator lamp (MIL) state, arbitrating and storing OBD freeze frame data and determining OBD status flags of the remainder of the plurality of control modules.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 3, 2013
    Assignees: Electronic Data Systems Corporation
    Inventors: Daniel P. Grenn, Marek L. Wilmanowicz, Aniket Kothari, Leonard G. Wozniak, Rick H. Schroeder, Andrew M. Zettel, Peter E. Wu, Wei D. Wang, Michael J. Taljonick, Jayanthi Padmanabhan
  • Publication number: 20120283921
    Abstract: A vehicular powertrain system includes an engine, an electro-mechanical transmission and an electric machine arranged in an input-split hybrid configuration. A control system for the powertrain system includes a control module signally connected to a plurality of input devices and configured to execute program code stored on a computer readable medium to control the powertrain. The program code monitors operator inputs, determines an intent to service the vehicle based upon the operator inputs, commands the electric machine to generate a net torque output of zero, and controls the engine speed correlative to an operator depression of an accelerator pedal.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, LLC, BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT, CHRYSLER LLC, DAIMLER AG
    Inventors: Marek L. Wilmanowicz, Matthew Leonard Kaufer, Mark J. Potter, Anthony H. Heap, William R. Cawthorne, Michael Bolton
  • Patent number: 8271173
    Abstract: A control method for vehicular hybrid powertrain system includes monitoring operator inputs to an accelerator pedal and a transmission gear selector, and determining an operator torque request based upon the operator inputs to the accelerator pedal and the transmission gear selector. Torque output from the electric machine is commanded based upon the operator torque request. Engine output is controlled based upon the operator torque request and the commanded torque output from the electric machine. Vehicle hood position is monitored and the engine output is controlled correlative to the operator input to the accelerator pedal when the monitored position of the vehicle hood is open and the operator input to the transmission gear selector is one of a PARK and a NEUTRAL position.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: September 18, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Marek L. Wilmanowicz, Matthew Leonard Kaufer, Mark J. Potter, Anthony H. Heap, William R. Cawthorne, Michael Bolton
  • Publication number: 20090118078
    Abstract: A control method for vehicular hybrid powertrain system includes monitoring operator inputs to an accelerator pedal and a transmission gear selector, and determining an operator torque request based upon the operator inputs to the accelerator pedal and the transmission gear selector. Torque output from the electric machine is commanded based upon the operator torque request. Engine output is controlled based upon the operator torque request and the commanded torque output from the electric machine. Vehicle hood position is monitored and the engine output is controlled correlative to the operator input to the accelerator pedal when the monitored position of the vehicle hood is open and the operator input to the transmission gear selector is one of a PARK and a NEUTRAL position.
    Type: Application
    Filed: October 1, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Marek L. Wilmanowicz, Matthew Leonard Kaufer, Mark J. Potter, Anthony H. Heap, William R. Cawthorne, Michael Bolton
  • Publication number: 20080179119
    Abstract: A power distribution system for a hybrid vehicle having an engine is disclosed. The power distribution system includes an electric motor/generator, a vehicle accessory drive system comprising a first accessory, and a power distribution apparatus. The power distribution apparatus includes a first power transfer member comprising a first shaft, the first shaft being configured to transfer power to the engine and from the engine. The power distribution apparatus further includes a second power transfer member comprising a second shaft, the second shaft being configured to transfer power to the motor/generator and from the motor/generator. The power distribution apparatus further includes a third power transfer member comprising a third shaft, the third shaft being configured to transfer power to the accessory drive system to drive the first accessory. The power distribution apparatus further includes a first clutch and a second clutch.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Daniel P. Grenn, Marek L. Wilmanowicz, Aniket Kothari, Leonard G. Wozniak, Rick H. Schroeder, Andrew M. Zettel, Peter E. Wu, Wei D. Wang, Michael J. Taljonick, Jayanthi Padmanabhan
  • Publication number: 20070179691
    Abstract: A distributed on-board diagnostic (OBD) architecture for a control system of a vehicle includes a plurality of control modules that are in communication with one another and a designated master OBD control module that is one of the plurality of control modules. The master OBD control module performs functions that a remainder of the plurality of control modules are incapable of performing including at least one of arbitrating a malfunction indicator lamp (MIL) state, arbitrating and storing OBD freeze frame data and determining OBD status flags of the remainder of the plurality of control modules.
    Type: Application
    Filed: September 13, 2006
    Publication date: August 2, 2007
    Inventors: Daniel P. Grenn, Marek L. Wilmanowicz, Aniket Kothari, Leonard G. Wozniak, Rick H. Schroeder, Andrew M. Zettel, Peter E. Wu, Wei D. Wang, Michael J. Taljonick, Jayanthi Padmanabhan
  • Patent number: 6558293
    Abstract: An improved powertrain control minimizes output torque disturbances due to garage shifting. Under certain predefined conditions, garage shifts to the forward or Drive range are carried out by initially commanding a shift to an upper forward gear ratio having a relatively low torque advantage, and then commanding a shift from the upper forward gear ratio to a lower forward ratio that is ordinarily used to launch the vehicle. The shift from the upper gear ratio to the lower gear ratio is initiated when the initial shift is substantially complete or when a predetermined period of time has elapsed since shift initiation. Engine management controls are also used to reduce the transmission input torque during garage shifts to both forward and reverse ranges.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: May 6, 2003
    Assignee: General Motors Corporation
    Inventors: Paul Skupinski, David Morganroth, Marek L. Wilmanowicz, Sheryl Page
  • Publication number: 20020187877
    Abstract: An improved powertrain control minimizes output torque disturbances due to garage shifting. Under certain predefined conditions, garage shifts to the forward or Drive range are carried out by initially commanding a shift to an upper forward gear ratio having a relatively low torque advantage, and then commanding a shift from the upper forward gear ratio to a lower forward ratio that is ordinarily used to launch the vehicle. The shift from the upper gear ratio to the lower gear ratio is initiated when the initial shift is substantially complete or when a predetermined period of time has elapsed since shift initiation. Engine management controls are also used to reduce the transmission input torque during garage shifts to both forward and reverse ranges.
    Type: Application
    Filed: June 11, 2001
    Publication date: December 12, 2002
    Inventors: Paul Skupinski, David Morganroth, Marek L. Wilmanowicz, Sheryl Page
  • Patent number: 6360156
    Abstract: A method is provided for determining an acceptable torque level to be applied to at least one clutch pack (of an automobile) which includes the requirement of internal slip to transmit torque. The automobile includes a plurality of wheels. A velocity is sensed at each of the plurality of wheels of the automobile. A speed information value is calculated. The speed information value is a function of the sensed velocities at each of the plurality of wheels. The speed information value is then compared with a calibration table. Finally, the acceptable torque level is determined primarily from the calibration table based on the speed information value.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 19, 2002
    Assignee: General Motors Corporation
    Inventors: David Morganroth, Marek L. Wilmanowicz