Patents by Inventor Marek Maciejewski

Marek Maciejewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8753601
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Ca10(PO4)6(OH)2) and tricalcium phosphate (TCP,Ca3(PO4)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 17, 2014
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Patent number: 8383544
    Abstract: Nitrogen oxide storage catalysts are used to remove the nitrogen oxides present in the lean exhaust gas of lean-burn engines. As a result of the stress due to high temperatures in vehicle operation, they are subject to thermal aging processes which affect both the nitrogen oxide storage components and the noble metals present as catalytically active components. The present invention provides a process with which the catalytic activity of a nitrogen oxide storage catalyst which comprises, in addition to platinum as a catalytically active component, basic compounds of strontium and/or barium on a support material comprising cerium oxide, said catalytic activity being lost owing to the thermal aging process, can be at least partly restored. The two-stage process is based on the fact that strontium and/or barium compounds formed during the thermal aging with the support material, which also comprise platinum, are recycled to the catalytically active forms by controlled treatment with specific gas mixtures.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 26, 2013
    Assignee: Umicore AG & Co., KG
    Inventors: Stephan Eckhoff, Meike Wittrock, Ulrich Goebel, Ina Grisstede, Ruediger Hoyer, Wilfried Mueller, Thomas Kreuzer, Maria Cristina Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Aflons Baiker
  • Publication number: 20110150737
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Ca10(PO4)6(OH)2) and tricalcium phosphate (TCP,Ca3(PO4)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 23, 2011
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Patent number: 7879303
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Patent number: 7638452
    Abstract: Nitrogen oxide storage catalysts are used for removing the nitrogen oxides present in the lean-burn exhaust gas of lean-burn engines. Here, the purifying action is based on the nitrogen oxides being stored in the form of nitrates by the storage material of the storage catalyst during a lean-burn operating phase of the engine and the previously formed nitrates being decomposed in a subsequent rich-burn operating phase of the engine and the nitrogen oxides which are being liberated again being reacted with the reducing exhaust gas constituents over the storage catalyst to form nitrogen, carbon dioxide and water. Storage catalysts are thermally aged by high temperatures. The aging is due to sintering of the catalytically active noble metal components of the catalyst and to formation of compounds of the storage components with the support materials.
    Type: Grant
    Filed: July 15, 2006
    Date of Patent: December 29, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Meike Wittrock, Ulrich Goebel, Thomas Kreuzer, Christina Maria Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Alfons Baiker
  • Publication number: 20090131243
    Abstract: Nitrogen oxide storage catalysts are used for removing the nitrogen oxides present in the lean-burn exhaust gas of lean-burn engines. Here, the purifying action is based on the nitrogen oxides being stored in the form of nitrates by the storage material of the storage catalyst during a lean-burn operating phase of the engine and the previously formed nitrates being decomposed in a subsequent rich-burn operating phase of the engine and the nitrogen oxides which are being liberated again being reacted with the reducing exhaust gas constituents over the storage catalyst to form nitrogen, carbon dioxide and water. Storage catalysts are thermally aged by high temperatures. The aging is due to sintering of the catalytically active noble metal components of the catalyst and to formation of compounds of the storage components with the support materials.
    Type: Application
    Filed: July 15, 2006
    Publication date: May 21, 2009
    Inventors: Meike Wittrock, Ulrich Goebel, Thomas Kreuzer, Cristina Maria Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Alfons Baiker
  • Publication number: 20070196259
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Application
    Filed: March 15, 2004
    Publication date: August 23, 2007
    Inventors: Wendelin Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Loher, Alfons Baiker