Patents by Inventor Marek Matusz

Marek Matusz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120323026
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited thereon, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 5.0 mmole/kg, relative to the weight of the catalyst; and wherein the carrier has a monomodal, bimodal or multimodal pore size distribution, a pore diameter of 0.01-200 ?m, a specific surface area of 0.03-10 m2/g, a pore volume of 0.2-0.7 cm3/g, wherein the median pore diameter is 0.1-100 ?m, and a water absorption of 10-80%.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 20, 2012
    Inventors: John Robert Lockemeyer, Marek Matusz, Randall Clayton Yeates
  • Publication number: 20120315198
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an bromide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of bromide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and an alkylene glycol.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 13, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Wayne Errol EVANS, Martin Lysle HESS, Marek MATUSZ, Eugene Marie Godfried Andre VAN KRUCHTEN
  • Publication number: 20120309992
    Abstract: The present invention relates to a process for improving the overall selectivity of an EO process for converting ethylene to ethylene oxide utilizing a highly selective EO silver catalyst containing a rhenium promoter wherein following normal operation a hard strip of the chloride on the surface of the catalyst is conducted in order to remove a portion of the chlorides on the surface of the catalyst. Following the hard strip, the catalyst is optionally re-optimized. Surprisingly, it has been found that the selectivity of the catalyst following the hard strip may be substantially higher than the selectivity prior to the hard strip.
    Type: Application
    Filed: December 2, 2011
    Publication date: December 6, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Martin Lysle HESS, Wayne Errol EVANS, Jeffrey Michael KOBE, Marek MATUSZ
  • Publication number: 20120277447
    Abstract: The present invention relates to a process for improving the selectivity of an EO process utilizing a highly selective EO catalyst. In particular, the present invention is an improvement in the initial operation of a process for manufacturing ethylene oxide by contacting ethylene, oxygen, a chloride moderator and a hydrocarbon co-moderator with a high selectivity silver-containing catalyst at a concentration of carbon dioxide of less than about 2 mole percent, wherein the initial operating temperature is determined by optimization of such initial operating temperature at a level higher than the normal low initial operating temperature that is typically selected to obtain a longer operating cycle.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Wayne Errol EVANS, Jeffrey Michael KOBE, Marek MATUSZ
  • Patent number: 8273912
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an bromide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of bromide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and an alkylene glycol.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 25, 2012
    Assignee: Shell Oil Company
    Inventors: Wayne Errol Evans, Martin Lysle Hess, Marek Matusz, Eugene Marie Godfried Andre Van Kruchten
  • Publication number: 20120226057
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Inventors: Randall Clayton YEATES, John Robert Lockemeyer, Marek Matusz
  • Publication number: 20120213679
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate and/or an alkylene glycol comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an iodide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of iodide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and/or an alkylene glycol.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Wayne Errol EVANS, Marek MATUSZ, Eugene Marie Godfried Andre VAN KRUCHTEN, Martin Lysle HESS
  • Publication number: 20120149926
    Abstract: The present invention relates to a process for improving the overall selectivity of an EO process for converting ethylene to ethylene oxide utilizing a highly selective EO silver catalyst containing a rhenium promoter wherein following normal operation a chloride strip of the chloride on the surface of the catalyst is conducted in order to remove a portion of the chlorides on the surface of the catalyst. The chloride strip involves the addition of certain saturated hydrocarbons to the feed. Following the chloride strip, the catalyst is optionally re-optimized.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 14, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Wayne Errol EVANS, Marek MATUSZ, Paul Michael MCALLISTER
  • Patent number: 8193374
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate and/or an alkylene glycol comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an iodide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of iodide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and/or an alkylene glycol.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 5, 2012
    Assignee: Shell Oil Company
    Inventors: Wayne Errol Evans, Marek Matusz, Eugene Marie Godfried Andre Van Kruchten, Martin Lysle Hess
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Publication number: 20110288339
    Abstract: The present invention provides a reactor system comprising: —one or more purification zones comprising an absorbent which comprises silver, an alkali or alkaline earth metal, and a support material having a surface area of more than 20 m2/g, and —a reaction zone comprising a catalyst, which reaction zone is positioned downstream from the one or more purification zones; an absorbent; a process for reacting a feed comprising one or more feed components; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 24, 2011
    Inventor: Marek Matusz
  • Publication number: 20110105771
    Abstract: A process for the epoxidation of an olefin comprising contacting a reactor feed comprising an olefin, oxygen, and carbon dioxide, with a catalyst comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the carbon dioxide is present in the reactor feed in a quantity of at most 3 mole percent based on the total epoxidation reactor feed; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; and the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 7, 2008
    Publication date: May 5, 2011
    Inventor: Marek Matusz
  • Patent number: 7932407
    Abstract: A process for the epoxidation of an olefin, which process comprises reacting a feed comprising an olefin, oxygen and an organic halide, in the presence of a catalyst comprising silver and rhenium deposited on a carrier, wherein the catalyst comprises rhenium in a quantity of at most 1.5 mmole/kg, relative to the weight of the catalyst, and at most 0.0015 mmole/m2, relative to the surface area of the carrier, and in which process the reaction temperature is increased to at least partly reduce the effect of loss of activity of the catalyst while the organic halide is present in a relative quantity Q which is maintained constant as defined herein.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: April 26, 2011
    Assignee: Shell Oil Company
    Inventors: Marek Matusz, Ruth Mary Kowaleski
  • Publication number: 20110034710
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the molar ratio of the first co-promoter to the second co-promoter is greater than 1; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; and the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 7, 2008
    Publication date: February 10, 2011
    Inventor: Marek Matusz
  • Patent number: 7704908
    Abstract: A method for reusing rhenium from a donor spent epoxidation catalyst, the method comprising: providing a donor comprising spent epoxidation catalyst comprising rhenium, the donor having a cumulative alkylene oxide production of 0.16 kT/m3 of the spent epoxidation catalyst or more; contacting the donor with an aqueous liquid to produce rhenium-depleted donor and aqueous extract comprising extracted rhenium; separating the aqueous extract and the rhenium-depleted donor; and, using the extracted rhenium as a source of rhenium in a subsequent process.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 27, 2010
    Assignee: Shell Oil Company
    Inventors: Marek Matusz, Richard Anthony Fragnito
  • Publication number: 20090287011
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an bromide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of bromide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and an alkylene glycol.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Wayne Errol EVANS, Martin Lysle HESS, Marek MATUSZ, Eugene Marie Godfried Andre VAN KRUCHTEN
  • Publication number: 20090286998
    Abstract: The invention provides a reaction system for the production of an alkylene carbonate and/or an alkylene glycol comprising: an epoxidation zone containing an epoxidation catalyst located within an epoxidation reactor; a carboxylation zone containing an iodide-containing carboxylation catalyst located within an alkylene oxide absorber; and one or more purification zones containing a purification absorbent capable of reducing the quantity of iodide-containing impurities in a feed comprising a recycle gas, which purification zones are located upstream from the epoxidation zone; and a process for the production of an alkylene carbonate and/or an alkylene glycol.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Wayne Errol EVANS, Marek MATUSZ, Eugene Marie Godfried Andre VAN KRUCHTEN, Martin Lysle HESS
  • Publication number: 20090281339
    Abstract: A process is provided for the start-up of an ethylene epoxidation process comprising: (a) contacting a catalyst bed comprising a high selectivity epoxidation catalyst with a feed comprising ethylene, oxygen and an organic chloride for a period of time until an increase of at least 1×10?5 mole-% of vinyl chloride (calculated as the moles of vinyl chloride relative to the total gas mixture), preferably 2×10?5 mole-% of vinyl chloride is detected in a reactor outlet gas or a recycle gas loop; and (b) subsequently adjusting the quantity of organic chloride in the feed to a value sufficient to produce ethylene oxide at a substantially optimum selectivity.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Inventors: Marek MATUSZ, Paul Michael MCALLISTER
  • Publication number: 20090281345
    Abstract: A process for the epoxidation of an olefin comprising contacting a reactor feed comprising an olefin, oxygen, and carbon dioxide, with a catalyst comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, and a potassium promoter; wherein the carbon dioxide is present in the reactor feed in a quantity of at most 3 mole percent based on the total epoxidation reactor feed; the potassium promoter is deposited on the carrier in a quantity of at least 0.5 mmole/kg, relative to the weight of the catalyst; and the carrier contains water leachable potassium in a quantity of less than 55 parts per million by weight, relative to the weight of the carrier; a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Inventor: Marek Matusz
  • Publication number: 20090275764
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Inventors: Randall Clayton YEATES, John Robert Lockemeyer, Marek Matusz